• 综述 •

中国改革开放以来的高分子物理和表征研究*

安立佳¹ 陈尔强² 崔树勋³ 董 侠⁴ 傅 强⁵ 韩艳春¹ 何嘉松⁴ 胡文兵^{6**} 胡祖明⁷ 江 明⁸ 李宝会⁹ 李良彬¹⁰ 李 林¹¹ 李卫华⁸ 林嘉平¹² 吕中元¹³ 门永锋¹ 沈志豪² 孙平川⁹ 童 真¹⁴ 王笃金^{4**} 武培怡⁷ 谢续明¹⁵ 徐 坚⁴ 徐志康¹⁶ 薛 奇⁶ 闫寿科¹⁷ 杨玉良⁸ 俞 炜¹⁸ 俞燕蕾⁸ 张广照¹⁴ 张 军⁴ 张俐娜¹⁹ 张平文² 张文科¹³ 赵 江⁴ 郑 强¹⁶ 周东山⁶

(¹中国科学院长春应用化学研究所 长春 130022) (²北京大学化学与分子工程学院 北京 100871)
(³西南交通大学材料先进技术教育部重点实验室 成都 610031) (⁴中国科学院化学研究所 北京 100090)
(⁶四川大学高分子科学与工程学院 成都 610065) (⁶南京大学化学化工学院 南京 210023)
(⁷东华大学纤维材料改性国家重点实验室 上海 200051) (⁸复旦大学高分子科学系 上海 200433)
(⁹南开大学物理学院 天津 300071) (¹⁰中国科技大学国家同步辐射实验室 合肥 230026)
(¹¹北京师范大学化学学院 北京 100875) (¹²华东理工大学材料科学与工程学院 上海 200237)
(¹³吉林大学理论化学研究所 长春 130023) (¹⁴华南理工大学材料科学与工程学院 广州 510640)
(¹⁵清华大学化工系 北京 100084) (¹⁶浙江大学高分子科学与工程学系 杭州 310027)
(¹⁷北京化工大学材料科学与工程学院 北京 100029) (¹⁸上海交通大学化学化工学院 上海 200240)
(¹⁹武汉大学化学与分子科学学院 武汉 430072)

摘 要 本综述介绍了改革开放四十多年来中国大陆学者在高分子物理和表征领域所取得的部分成 就.按照时间顺序,分别从概念的突破、理论的发展和技术的创新三个方面选取具有代表性研究成果 进行简短的介绍,以期展示当代中国学者在这一基础研究领域所表现出来的拼搏意志和创新精神, 激励新一代学者共同努力,勇攀科学高峰,为国民经济和社会发展作出更大的贡献. 关键词 高分子物理,高分子表征,相分离,结晶,流变和力学性质

高分子物理和表征研究领域的核心目标是理 解高分子结构与性能之间的关系,由此可见这一 领域是衔接高分子材料的合成和加工这两大研究 领域的桥梁,对促进高分子材料的实际生产,推 动国民经济的发展发挥着重要的作用.中国改革 开放四十多年来,伴随着国民经济的蓬勃发展, 这一领域的基础研究工作也取得了长足的进步.

在改革开放初期的20世纪80年代,中国科学 院化学研究所钱人元主持的攀登计划"高分子凝 聚态的基本物理问题研究"项目, 吹响了中国学 者向高分子物理和表征领域进军的号角. 该项目 的单链凝聚态物理研究工作具有鲜明的原创特 色, 在国际学术界产生了较大的影响^[1,2]. 参与该 项目的课题组分布在国内各大院校, 例如中国科 学院化学研究所、中国科学院长春应用化学研究 所、北京大学、复旦大学、南京大学、中国科学 技术大学、吉林大学和南开大学等, 这些单位培 养了一大批年轻人才, 成为近四十年来高分子物

^{*}庆祝中华人民共和国成立70周年专辑; 2019-06-17收稿, 2019-07-13修稿, 2019-08-30网络出版.

^{**} 作者排名不分先后,以姓氏汉语拼音为序;通讯联系人, E-mail: wbhu@nju.edu.cn; djwang@iccas.ac.cn doi: 10.11777/j.issn1000-3304.2019.19118

理和表征研究领域的骨干力量.钱人元20世纪 50年代末在中国科学技术大学系统讲授了高分子 物理课程,其讲义内容形成了国内高分子物理教 材的主要体系,影响较大的有复旦大学版《高分 子物理》和中国科学技术大学版《高聚物的结构 与性能》.四川大学吴大诚自1982年从斯坦福大 学诺贝尔奖得主Flory课题组做访问学者回国后, 邀请了另一位诺贝尔奖得主de Gennes来华举办暑 期讲习班,还组织撰写和翻译出版了一批现代高 分子物理学专著,推动了高分子物理和表征现代 基础理论知识在国内的传播.

改革开放以后,国家派出大批留学生和访问 学者出国深造,学成回国的学子陆续成为高分子 物理和表征研究领域的栋梁之才.与此同时,科 技部和国家自然科学基金委设立了国际合作和交 流基金项目,教育部和中国科学院也大力支持国 际合作和交流活动.除了每两年召开一次的规模 最大的全国高分子学术论文报告会外,一系列高 分子物理相关的国际和国内学术会议也得以蓬勃 开展. 比较成系列的有每两年一次的高分子物理 国际研讨会、工程塑料国际研讨会、高聚物分子 结构与表征研讨会、高分子材料科学与工程研讨 会、大分子理论模拟与计算研讨会、高分子成型 加工与产业应用研讨会,以及每年一次的复杂流 体流变学研讨会和高分子结晶研讨会,为中国学 者的国际学术交流和国内年轻人才的快速成长创 造了有利的学习条件和积极的学术氛围. 这些较 有影响的学术会议也从一个侧面反映了相关研究 方向的活跃程度以及发展规模.

高分子物理国际研讨会(The International Symposium on Polymer Physics, PP)是由中国科 学院化学研究所、日本大阪大学、美国麻省大学 联合发起举办的系列国际学术会议,第一届于 1993年在北京香山饭店召开,参会代表30余名,发 展至第13届,参会代表达到400余名.在施良和、 程鎔时、叶美玲、张俐娜、吴奇等的倡导下,首 届全国高聚物分子与结构表征学术讨论会于 1997年召开,约八十多名代表齐聚武汉,到 2018年已经连续举办了十一届,与会代表也达到 400人.全国高分子材料科学与工程研讨会由中国 化学会、中国机械工程学会和中国材料研究学会 联合主办,由中国机械工程学会材料分会高分子

材料专业委员会(挂靠清华大学化工系)组织和承 办. 自1998年以来, 逢双数年召开, 至今已召开 11届,2018年的参会代表已突破千人,高分子成 型加工及其产业发展研讨会自2013年5月由四川 大学高分子科学与工程学院和高分子材料工程国 家重点实验室发起以来,迄今已成功举办4届, 与会代表接近400人. 工程塑料国际学术研讨会 (International Symposium on Engineering Plastics, EP)是在我国举行的、中等规模的系列国际学术 会议. 第一届于2001年由中国科学院工程塑料重 点实验室与荷兰高分子研究所/埃因理工大学联合 举办, 迄今已成功举办8届. 复杂流体流变学前沿 研讨会系列会议由上海交通大学流变学研究所发 起主办,自2007年起每年举办一届,至今已连续 举办12届.2010年安立佳和杨玉良在厦门召开的 中国化学会第27届学术年会上组织了以聚合物科 学中的理论、模拟和计算研究为主题的第7分 会,与会代表一百多人.接下来2012年5月在南京 大学成功举办了大分子体系的功能结构与模拟研 讨会,2013年开始纳入到每两年一届的全国高分 子学术论文报告会高分子理论计算模拟分会, 2014年在长春形成每两年一届单独举办的软物质 理论计算与模拟系列研讨会,2016年在南开大 学,2018年在华东理工大学召开,会议规模已超 过200人. 高分子结晶系列国际研讨会最初由德国 弗莱堡大学Strobl于1999年发起黑森林会议,每 两年举办一次.南京大学胡文兵在2006年举办的 中法双边高分子结晶学研讨会基础上,于2009年 在上海、2011年在北京、2013年在日本京都、2015 年在美国夏威夷、2017年在德国维滕贝格、2019年 在西班牙圣塞巴斯蒂安,继续推动每两年一次的 高分子结晶学国际研讨会的召开,期间中国学者 成为近几届会议出席人数最多的代表.国内系列 会议自2016年在郑州大学举办中原高分子结晶青 年论坛开始,2017年在广东工业大学举办了每年 一届的高分子结晶理论、应用和表征技术研讨会. 2019年第三届研讨会参加的人数已超过160人.

改革开放使得中国迅速崛起成为世界制造大 国,塑料、纤维、橡胶、涂料和功能树脂总产量 和市场占有量均位居世界前列,为我国工业、农 业、国防、环境和健康等事业的蓬勃发展提供了 基础材料的保障.这一成就离不开我国基础研究 打破国外垄断所取得的国产化技术进步以及我国 培养的大规模人才队伍. 在塑料行业比较有特色 的国产化技术有双向拉伸聚丙烯薄膜、聚合物水 处理膜、聚烯烃锂电池隔膜和长碳链尼龙树脂 等,在纤维行业比较有特色的国产化技术有丙 纶、聚酯纤维、芳纶、超高分子量聚乙烯纤维和 碳纤维等. 立足国内开发的天然材料如纤维素和 壳聚糖等的低温溶剂和离子液体溶剂加工技术也 获得了产业界的应用.

在庆祝中华人民共和国成立70周年之际, 《高分子学报》副主编王笃金和胡文兵邀请部分 学界同行专家共同撰写了高分子物理和表征这一 领域的相关内容进展综述.我们的写作思路,是 从概念的突破、理论的发展和技术的创新这三个 方面入手,按照年代先后,选取几个代表性研究 成果进行简要的介绍.

1 概念的突破

1.1 高分子单链凝聚态

高分子单链凝聚态体系蕴含了高分子凝聚态物理的许多基本原理,对其加以深入系统的研究,有助于理解高分子不同于小分子的许多独特物理性质.中国科学院、国家自然科学基金委、国家科委等部门持续资助以钱人元为首席科学家的"高分子凝聚态的基本物理问题研究"项目,在国际上开辟了高分子单链凝聚态研究的新方向,提出了单链单晶、单链玻璃态、共混高聚物的不相容-相容-络合转变等具有原创性的新概念,在国际高分子物理和表征研究领域发出了中国人的

声音.

20世纪80年代末,复旦大学卜海山课题组将 高分子量聚氧乙烯稀溶液喷洒在热水表面上,然 后采用LB膜制备技术收集高分子单链线团液滴, 用透射电子显微镜等手段证实了高分子单链可以 形成单晶体^[3],可出现规则的形貌以及复杂的孪 晶结构,由此提出并证明了"单链单晶"这一概 念,图1所示为等规聚苯乙烯的单链单晶形貌^[4]. 其后他们将高分子稀溶液经冷冻升华后得到单链 和寡链粒子的聚集体,证明单、寡链粒子聚集体 的结晶行为与本体不同,冷结晶温度大大降低,结 晶速度大大提高,反映了本体链缠结对高分子结 晶的影响^[5]."单链单晶"这一概念为Wunderlich 的高分子结晶"分子成核"概念以及随后胡文兵等 的链内成核模型奠定了有利的实验基础.

1993年,中国科学院化学研究所钱人元课题 组与澳大利亚科学家合作研究了用微乳液法制得 的单链或寡链聚苯乙烯纳米小球的结构和特性, 否定了文献中高分子冰冻降解的学说,提出并证 明了单链玻璃态的存在^[6].

高分子单链线团在不良溶剂中由于相分离而 塌缩成一个内部密实堆砌的小球.1995年,香港 中文大学吴奇课题组利用激光光散射,在其制备 的窄分布超高分子量热敏性水溶高分子聚(*N*-异 丙基丙烯酰胺) (PNIPAM)极稀溶液中,首次观察 到理论上预测的随溶剂质量变差而发生"线团到 塌缩球"的构象变化(coil-to-globule transition), 并发现构象变化过程中存在着一个"融化球" (molten globule)构象^[7],与折皱线团(crumpled

Fig. 1 TEM images of single-chain single crystals of isotactic polystyrene (The scale bar at the left-down corner is 20 nm.) (Reprinted with permission from Ref.[4]; Copyright (1994) John Wiley and Sons)

oil)并存^[8,9],如图2所示.在此基础上,他们研究 了含有亲水和疏水链段的热敏性共聚物的单链构 象变化,首次发现疏水链段的存在使链在蜷缩过 程中形成"中介态球",并最终形成更加稳定的 核-壳结构的塌缩球^[10].吴奇等还用红外纳秒脉冲 激光加热的方法,研究了热敏性高分子"线团到 塌缩球"的蜷缩动力学,并发现其包含了"成核" 和"粗化"2个过程.其中,"成核"过程与链长无 关^[11].单链塌缩过程中的"融化球"现象随后被计 算机分子模拟证实是一个热力学可逆现象,并具 有核-壳结构特点^[12].分子模拟进一步证实该现象 与链的端基无关,可能是塌缩球在接近相分离临 界条件时所发生的表面预溶行为^[13].

Fig. 2 Illustration of crumpled coil and molten globule reversibly occurring during the collapse transition from coil to globule states of single polymers in dilute solutions (Reprinted with permission from Ref.[8]; Copyright (1998) American Physical Society)

单链凝聚态模型理论也可应用于其本体性质的预测.非缠结单链高分子的线性黏弹性可用 Rouse、Bueche和Zimm的珠-簧模型描述.其关键 是写出高分子链中每个链段单元对应的朗之万方 程,并且链的运动方程组成了一个闭合的微分方 程组,每个方程之间因存在链单元之间的弹簧连 接而存在相互耦合关系,这种耦合可用反映链段 之间连接关系的矩阵即Rouse矩阵来表示.1998 年,复旦大学杨玉良课题组通过图论(graph theory) 方法求出了超支化高分子的各种黏弹性质^[14].这 一方法还可推广至具有任意拓扑结构高分子链, 从而方便地解决了任意拓扑结构高分子的黏弹性 理论计算问题^[15].

2012年,中国科学院长春应用化学研究所

安立佳课题组根据稀溶液的特性黏度定义,将特 性黏度与黏度的关系转化为特性黏度与能量耗散 率的关系,基于高分子链节的径向密度分布函数,提 出了单个高分子线团含多体流体力学相互作用和长 程累积效应的部分穿透球模型(partially permeable sphere model),并且在平均场框架下,引入携水 函数和泄水函数,基于流体动力学和统计力学方 法,在平均场框架下有效地处理了多体流体力学 相互作用和长程累积效应,避开了到目前为止数 学和物理学仍无法直接处理的多体问题[16].同 时,他们结合Einstein的非泄水胶体球扰动耗散理 论和Debye的自由泄水分子链转动耗散理论,推 导出任意拓扑结构高分子特性黏度的普适性理论 公式,与实验结果对比,能够同时定量预测线 形、环形、星形、支化、超支化和树枝形等高分 子的特性黏度,且可预测特性黏度随支化度的变 化规律[17],如图3所示.

2015年,南京大学胡文兵课题组基于动态蒙 特卡罗分子模拟,发现了高分子单链线团在均匀 驱动场中定向运动时会发生线团变形的现象^[18], 并揭示了其沿高分子单链的动力学不均一性所导 致的"挥鞭效应"(cracking-the-whip effect)^[19].这 一链结构单元沿着高分子链的非线性加速效应, 对深入理解高剪切场中本体高分子非牛顿流体的 流变行为具有重要意义^[20].

1.2 甲壳型液晶高分子

液晶高分子主要有主链型和侧链型2类. 侧链 型液晶高分子主要根据德国科学家Ringsdorf和 Finkelmann提出的"柔性去耦"理论设计得到,分 子链具有一定的柔性. 主链型液晶高分子表现出 较强的刚性,具有刚性聚合物的特性,一般通过 缩聚法合成,分子量较低.1987年北京大学周其凤 课题组提出了"甲壳型液晶高分子"(mesogenjacketed liquid crystalline polymer, MJLCP)的概 念[21],即侧基间较强的"甲壳"效应(即体积排斥 作用)会促使其主链呈现伸展的构象,在物理性质 上与主链型液晶高分子相似,具有刚性链特征[22,23], 可用活性聚合制备,达到较高的分子量.甲壳型 液晶高分子材料具有优异的热稳定性,可用于热 塑性液晶弹性体、固态聚合物电解质等,可以作 为超分子柱或片层构筑单元,自组装后可获得复 杂的多层次组装结构[24].

Fig. 3 Partially drained model and relationships between specific viscosity and molecular weights (or dendrimer generation) of single polymers with linear, ring, star, hyperbranched and dendrimer topological architectures (Solid dots: experimental results in good solvent; vacancy dots: experimental results in theta solvent; curves: theoretical prediction of the general theory of polymer specific viscosity) (Reprinted with permission from Ref.[17]; Copyright (2013) American Chemical Society)

1.3 高分子共混物的不相容-相容-络合转变

1991年,复旦大学江明课题组首次采用非辐 射能量转移荧光光谱法(NRFT)发现,随着氢键含 量的上升,不相容共混体系可以转变为相容^[25]. 但当体系的氢键密度继续增加时,本来不相容的 聚合物的能量转移能力竟然超过了相容体系, "比相容体系更相容".这意味着可能形成了不同 于一般相容的新物理状态[26].为了解其本质, 江明等与吴奇合作,用光散射方法对共混物溶液 进行了深入研究,发现随着高分子链上作用基团 密度的增加,氢键强度逐渐增加,溶液中孤立的 异种高分子链逐渐形成可溶的大分子络合物 (interpolymer complex),并进一步形成不溶的大 分子聚集体[27],也就是说,发生了"不相容-相容-络合"的转变(immiscibility-miscibility-complexation transitions). 这一概念为相关领域研究者广 泛应用.研究揭示,相容体系和络合体系都为均 相,但前者异种链节无规混合,后者异种链节相 互配对,两者状态不同[28].这一发现串接了"特殊 相互作用增容"和"高分子络合"这2个原本独立 开展研究的领域,阐明了这2个过程和结果在本 质上的共性和区别^[29],该研究成果还孕育了"大 分子自组装的非嵌段共聚物路线".

1.4 高分子基复合材料的增韧增强

20世纪90年代,四川大学傅强和王贵恒课题 组是国际上较早探索用无机刚性粒子填充对高分 子进行增韧增强的研究团队之一,报道了无机刚 性粒子填充高密度聚乙烯材料的脆-韧转变及其规 律^[30],从影响增韧的基体链结构的分子判据和填 充体系界面力学行为的角度,对填充材料的结构和 界面活性物质进行分子设计,有效控制了填充体系 的形态结构,并提出了刚性粒子增韧的芯-壳模型 和脆韧转变判据^[31],如图4所示.他们运用逾渗理 论从唯象角度论证了无机刚性粒子增韧的可行性, 使聚合物增韧在弹性体-有机刚性粒子增韧技术的 基础上向无机刚性粒子多元化增韧技术发展,突 破了无机刚性粒子增强增韧聚合物的传统概念.

2 理论的发展

2.1 嵌段共聚物自组装

软硬段共聚物是指柔性链段和刚性链段以共 价键相连形成的嵌段共聚物.柔性链段和刚性链 段表现出截然不同的聚集行为,这使得软硬段共 聚物的组装具有多层次性.Flory建立的高分子液

晶理论是描述硬段高分子液晶现象的有效理论, 但尚不能解释软硬段共聚物的多层次自组装行 为,因而需要较完备的理论来描述软硬段共聚物 的多层次组装行为,特别是硬段高分子的液晶相 行为.2003年,华东理工大学林嘉平课题组与日 本学者合作,以分子链构象可变的聚肽为理论研 究模型,发现软硬段共聚物形成液晶结构时,软 段分子链只有发生柔-刚链构象转变,才可能进入 液晶相^[32],并且在一定条件下共聚物可形成微相 分离的层状、柱状和球状等液晶微相结构^[33].结 合实验,他们发现软硬段共聚物自组装可形成具 有多级液晶相的超分子螺旋结构^[34],如图5所 示,还发现了胶束超分子聚合和环化现象^[35],为 有序多层次纳米结构的逐级构筑提供了新的途径.

受限空间是调控嵌段共聚物体系自组装行为 的有效途径.2006年,南开大学李宝会课题组与 加拿大史安昌合作,利用受限产生对称破缺的思 路,通过构建不同系列的受限条件(维度、尺寸、 表面作用等),研究了受限条件与自组装结构之间 的关系,预测了丰富的受限诱导的介观自组装结 构(图6),其中许多是在未受限时不能形成的结 构,阐明了不同结构的形成机理以及基于结构受 挫程度的形态转变机理,提出了受限几何和小尺 寸等效应^[36-38].预测结果得到了之后的许多实验 工作的证实,也得到国际同行的广泛引用和高度 评价.嵌段共聚物受限自组装为可控制备新型纳 米器件以及具有特定微相结构的新材料等提供了 有力的理论依据,也与生命科学中的许多自组装 装领域的发展.

在两嵌段共聚物弱相分离区域,条件相邻的 微相结构之间的转变往往由成核机理所控制,这 里不同的两相是系统自由能的稳定态或亚稳态, 连接两相的最小能量路径包含了临界核过渡态, 而弦方法是最小能量路径的高效数值计算方法. 2010年,北京大学张平文课题组与加拿大史安昌 合作,将高分子领域的自治平均场理论转化为弦 方法自由能形式,解决了两相周期的匹配问题[39], 回答了一个重要的科学问题,"一个有序结构是 怎样从另一个有序结构中涌现的". 最小能量化路 径并不唯一,通过计算可以得到不同的路径,自 然也就可以得到不同临界核的形状、大小和能量 势垒,从而可以计算不同路径的势垒和概率[40]. 另外,某些情况下,最小能量化路径包含其他中 间态,需要经过2次或多次成核才能演化到稳定 的终态.这些计算结果为理解实验现象提供了很 好理论依据^[41],推动了相关研究进展.

12 um

在嵌段共聚物功能材料的制备中,典型的正 向思路是从分子结构设计出发对嵌段共聚物分相 进行调控,从而获得目标纳米有序结构.因此, 研究通常聚焦于探索已知组分数和链拓扑结构的 嵌段共聚物体系可能形成的有序结构,构建相 图,理解相关的分相机理.但是其预测新纳米结 构的效率较低.2014年,复旦大学李卫华等与加 拿大史安昌合作提出了一个反向思路:针对目标 纳米结构,反向推演嵌段共聚物分子结构^[42].在 具体研究中,首先发展设计嵌段共聚物体系的指 导原理,然后依据原理反向推演嵌段共聚物分子

Fig. 5 (a) Theoretical predictions on the liquid crystalline microphase structures formed by soft-hard block copolymers (Reprinted with permission from Ref.[33]; Copyright (2009) AIP Publishing); (b) Supermolecular helixes formed by soft-hard block copolymers; (c) Molecular modeling revealing the hierarchical liquid crystalline phase structure in supermolecular helixes (Reprinted with permission from Ref.[34]; Copyright (2013) John Wiley and Sons)

Fig. 6 Variation of some typical columnar structures self-assembled by bulk diblock copolymers under 2D confinement of columnar space with variable length-to-radius ratios (Reprinted with permission from Ref.[38]; Copyright (2013) The Royal Society of Chemistry)

结构,最后通过自洽场理论正向验证目标结构的 稳定性.此外,结合结构的空间对称群、强分离 近似、外加势场以及随机扰动多个手段,发展了 求解自洽场理论的初始场设计方法.该方法结合 准谱法可以高效地获得各种复杂结构的自洽场 解,并且精确计算它们的自由能,成功克服了理 论方法在预测新结构上的困难,建立了多个嵌段 共聚物分子设计的指导原理,获得了一系列复杂/ 非经典纳米有序结构,特别是丰富的介观晶体结 构,打破了嵌段共聚物自组装形成介观晶体种类 少的局限性^[43],如图7所示.理论研究推动了相关 的实验研究,部分理论预测得到了实验的证实. 这些新结构扩充了纳米结构库,从而有可能拓宽 嵌段共聚物的应用范围,同时也加深了对嵌段共 聚物分相机理的认识.

2.2 高分子结晶

高分子结晶过程的复杂性,如分子量分布 宽、成核方式多样性、晶体生长和取向受外场影 响、多重熔融、晶型转变等,使其结晶学研究难 以深入到分子和链段水平,即如何从分子链有序 堆砌的角度解释结晶过程中发生的各种成核行 为、晶型转变以及晶粒尺寸变化等.因此,建立 模型体系,调控多种影响因素,实现高分子结晶 研究的定量化、精细化等,成为高分子结晶领域 的挑战性课题.

北京化工大学闫寿科课题组利用表面受限结 晶,改变了聚偏氟乙烯熔融重结晶的β相向α相转 变的常规路径,实现了熔融重结晶过程的α→β转 变^[44],如图8所示,不仅为优异铁电性能聚偏氟 乙烯β相的制备提供了有效途径,而且使不同微

Fig. 7 Illustration of inverse prediction of self-consistent field theory on the self-assembly structures of diblock copolymers (Reprinted with permission from Ref.[43]; Copyright (2016) American Physical Society)

相区域的晶体类型和分子链取向得到很好控制, 为结构化薄膜制备提供了有效方法,在显示和储 存领域具有潜在的应用前景^[45].他们还实现了高 取向聚合物薄膜的熔融取向重结晶.高于熔点温 度后取向结构的自然消失会丧失相应的性能和功 能,基于取向熔融重结晶的结构自修复为性能和 功能的恢复提供了保障^[46].

中国科学院化学研究所王笃金课题组以长链 正烷烃为高分子结晶的模型化合物,将其受限于 微胶囊中、纳米二氧化硅表面,或者接枝在主链 柔顺性不同的高分子链上,研究其结晶过程中的 成核行为、多重相转变和同质多晶等特点,进一 步扩展到极长碳链正烷烃、低聚物到线性聚乙 烯、侧链支化高分子等,逐步搭建了从小分子到 高分子受限结晶的桥梁[47],如图9所示. 他们还发 现单组分和双组分混合长链正烷烃受限于微胶囊 中或二氧化硅表面上,其表面结晶现象增强,旋 转亚稳相稳定性增加; 窄分子量分布的高分子在 阳极氧化铝AAO纳米微孔中成核和结晶生长时, 其链段取向和片晶排列方式决定于纳米孔尺寸和 表面性质[47].另外,主链刚性和烷基侧链长度不 同的梳状高分子存在最小临界可结晶侧链长度的 要求,通过控制梳状高分子主链刚性,实现了对 侧链结晶结构和多晶型的调控^[48].

Fig. 8 Illustration of interface-controlled crystallization in the preparation of PVDF structured films. " β " region formed by the lamellar PVDF β -crystals stacked with zigzag conformation, in the lamellar PVDF α -crystals stacked with helical conformation

共轭高分子既具有传统高分子的溶液加工 性,又具有无机半导体的光电转换行为,为光电 功能高分子材料和器件的创新源头.链结构与凝 聚态结构是载流子输运的核心.如何通过认识共 轭聚合物溶液构象转变机理和成膜动力学,实现 共轭聚合物薄膜微结构的调控,建立凝聚态结构-性能-溶液加工过程关系,是有机印刷电子学最核 心和最具有挑战性的科学问题.中国科学院长春 应用化学研究所韩艳春课题组发现共轭聚合物溶 液中缠结→解缠结→结晶成核和生长平衡,及降 低生长过程中聚合物分子链聚集速度,是高浓度 下制备高密度的长纳米线的关键^[49,50].另外,成 膜过程中降低共轭聚合物侧链位阻可以促进主链 构象平面化,利于分子链π-π堆积,通过进一步 控制成膜速率与结晶生长速率匹配,可以实现大 面积高有序结晶薄膜的制备^[51],如图10所示.上 述研究工作建立了共轭聚合物聚集态结构-溶液加 工特性关联规律,为溶液加工共轭聚合物的分子 设计和合成及其高质量结晶薄膜提供了科学依据 和理论指导,对研发共轭高分子墨水和采用低成 本印刷技术制备高性能、柔性、大面积的新一代 全印刷有机光电器件具有重要意义.

多组分高分子结晶的热力学条件需要相图的 理论指导.南京大学胡文兵课题组利用高分子的 平行排列相互作用模型和格子链统计热力学理 论,分别推导了结晶和相分离的热力学相平衡方 程,用于计算热力学相图曲线,从而指导分子模 拟开展溶液和共混体系相分离与结晶相互作用的 动力学和形态学调控研究^[52,53]. 高分子折叠链片 晶生长的动力学理论也取得了系统的进展,利用 链内次级成核模型,考虑片晶侧表面晶体生长前 沿所发生的结晶次级成核与晶体熔融之间的动力 学竞争,推导出了片晶生长的速率方程^[54],其可 以解释高分子片晶生长的许多独特动力学现象^[55,56]. 嵌段共聚物纳米尺度微相畴内发生的受限结晶机 理^[57]和统计型共聚物序列结构与其结晶行为之间 的关系研究^[58]也取得了系统的进展.

理解半结晶高分子材料力学破坏行为是其安 全服役的基础. 高分子材料在宏观层次被察觉失 效时,其微观结构早已遭到大规模的破坏. 然 而,现有的技术还未能实时检测高分子材料在微 观上的初始破坏,其破坏机理多半基于破坏后的

Fig. 9 Illustration of long-chain alkanes confined in spherical space to represent the space-confined polymer systems (Reprinted with permission from Ref.[47]; Copyright (2014) American Chemical Society)

Fig. 10 Illustration of preferred orientations selected by crystallization of P3HT multi-block copolymers (Reprinted with permission from Ref.[51]; Copyright (2015) American Chemical Society)

微观及宏观行为表现来推演.中国科学院长春应 用化学研究所门永锋课题组发展了互穿网络模 型,认为结晶高分子力学行为在小形变时由晶相 构成的骨架网络决定,非晶缠结网络在大形变时 起主导作用,即小形变时塑性形变机理为片晶内 的晶块滑移,非晶网络逐渐取向产生熵弹力至临 界应变达到晶块破坏的临界应力而发生微纤化(应 力诱导的熔融-重结晶),之后至大形变可认为是 微纤填充的高度取向非晶网络的进一步拉伸[59,60]. 当晶块滑移不能激活时,晶体骨架网络的破裂则 导致体系发生小形变时空洞化[61,62],当塑性形变 至大形变时,进一步的拉伸可导致微纤间系带分 子构成的非晶网络破坏,进而发生微纤应力失 衡,产生空洞化[63].发生在不同形变区间的2种空 洞化相互独立,分别对应晶相与非晶网络,从而 澄清了结晶高分子材料在应力场下的结构演化规 律,为理解相关制品微观结构及性能定制提供了 理论基础. 通过对高分子材料破坏过程中微观结 构与宏观行为表现的对应解析,为从宏观上辨识 材料是否已经失效提供了一定的依据.

2.3 高分子流变学

共混是最常用的高分子改性方法,共混物的 相形态与性能的关系,以及相形态在流场中的演 变规律是共混物制备与加工须解决的关键问题. 以Taylor模型为基础的乳液理论只能解决黏性流 体混合问题,而以Palierne模型为代表的黏弹性模 型只适用于小形变的情况,这些传统理论无法解 决黏弹性高分子共混物在加工过程快速、大形变 中的复杂结构演变问题. 上海交通大学俞炜课题 组提出了结合流体力学、非平衡热力学的有效建 模手段,建立了一系列共混体系流变学本构模 型,形成了较为系统的理论,实现了对黏弹性体 系相形态演变和流变性质的准确预测,理论不受 材料体系、相形态、界面性质、流场类型与强度 的限制,具有广泛的普适性[64,65],如图11所示, 基本解决了高分子共混体系中大分子构象、相形 态之间的多尺度、多层次结构耦合问题,包括快 速、大形变流场中的形态演变问题,高分子本体 黏弹性和界面黏弹性与相形态演变的耦合问题, 双连续相形态的黏弹特征等一系列关键问题.对 相形态演变的准确描述使得对高分子材料注射成 型、挤出成型等复杂加工流场中预测相形态的演

Fig. 11 Instant normal stress versus strain curve of the polyisobutylene/polydimethlesiloxane blend at start-up shearing (5 s⁻¹). The overshooting of apparent normal stress is determined together by different sizes of droplet deformation, as well as by stress overshooting raised by fracture (Reprinted with permission from Ref.[64]; Copyright (2007) AIP Publishing)

变与分布成为可能.同时,为高分子共混材料和 高分子共混复合材料的发展与制备提供了理论依 据和设计思路.

浙江大学郑强和宋义虎等对高分子纳米复合 材料流变学进行了系统深入的研究.基于非均质 结构、多尺度分子弛豫特性和基体微观应变放大 效应,他们建立了适用范围极宽(从类液体到类固 体)的"两相流变"模型,提出高分子纳米复合材 料非终端区域线性流变的时间-浓度叠加原理和非 线性流变的应变幅度-浓度叠加原理,揭示了基体 对其补强、耗散及非线性流变行为的决定性贡献 及其与"粒子相"间的黏弹性耦合效应,被国际流 变学同行称为"宋-郑两相流变模型",如图12所 示."两相流变"突破以往从流变"黑箱"推测并强 调"高分子运动受限"、界面相互作用及"粒子网 络"流变学贡献的局限性,统一了高分子纳米复 合材料类液、类固流变行为机制,揭示了高分子 基体本征动力学对高分子纳米复合材料流变行为 的贡献. 在模型指导下, 开展的高分子纳米复合 材料流变行为研究,基于粒子表面性质、基体分 子量及其分布以及熔体热处理等实现类液-类固转 变行为的调控,对发展"界面层属性可预测"、 "黏弹性可调控"的高分子纳米复合材料加工方法 有重要的指导意义[66].

3 技术的创新

高分子复合材料的应用极为广泛,纳米技术

Fig. 12 Linear (a) and non-linear (b) rheology curves and their corresponding integrated curves (c, d) of polymer nanocomposites PNC (Reprinted with permission from Ref.[66]; Copyright (2016) AIP Publishing)

和微电子领域的快速发展不断提出电子器件用的 新材料.但是复合材料界面结构的复杂性和使用 环境中的不稳定性使得研发工作难以有效地开展. 采用高灵敏光谱技术,精细地研究和调控高分子 链在界面的结构和动力学行为,有助于研发出终 极使用的器件和工程中所需要的可靠的高性能复 合材料.南京大学薛奇课题组采用改进了的表面 增强拉曼光谱(SERS)和荧光共振光谱,发现了杂 环化合物在金属表面的化学反应[67,68],如图13所 示.表界面研究成果对集成电路制造产业的发展、 金属防腐与粘结等有重要意义.光谱研究还发现, 当高分子链在界面受限态时,其物理性质会发生 很大的变化[69],例如玻璃化转变和动力学等[70]. 他们还提出了在设计复合材料时,高分子与基底 材料在玻璃化转变时的热膨胀系数的失配,是必 须考虑的界面问题[71].为了提高PET聚酯加工过 程中对红外热源的吸收能力,他们设计了连接无 机的红外吸收剂和PET链接的界面连接剂.用 NMR和SERS光谱,找出一种含硫化合物,可以 与红外吸收剂结合,另一端与PET连接.并且,基 于界面玻璃化转变温度和热膨胀系数变化效应, 设计了连接剂的中间部分.这样,获得了结构稳 定的改性树脂,在加工时可节电20%,提高生产 速度25%.目前,这种节能PET树脂,已经达到年 产百万吨的大规模生产能力,销往世界各地.

纤维素和甲壳素是自然界最丰富的天然高分 子,属于可持续性高分子材料,但它们很难溶解 而难以加工.武汉大学张俐娜课题组开创了 NaOH/尿素、LiOH/尿素和KOH/尿素水溶液低温 溶解纤维素、甲壳素、壳聚糖和聚苯胺的新技术 和新机理[72,73]. 由此, 创建了基于聚多糖大分子 和溶剂分子低温下容易形成氢键包合物,致使大 分子分散而溶解的新方法,并证明低温溶解技术 和理论具有一定普适性.同时,证明它们在溶液 中呈刚性链构象,并且容易平行聚集形成纳米纤 维. 他们由低温溶解的纤维素、甲壳素和壳聚糖 溶液用再生法并经过多级结构调控以及诱导纳米 纤维形成,成功制备出高强度和多功能的纤维、 薄膜、微球、水凝胶、气凝胶、生物塑料等新材 料(图14)^[74,75]. 多种表征方法证明它们的溶解和再 生都是物理过程,这些新材料具有优良的力学性 能、电化学性能、生物相容性和生物降解性,在 生物医用材料、储能、环境和健康等领域具有应 用前景.

石英晶体微天平技术(QCM)基于反压电效 应,即电场作用下的石英震荡,1998年,瑞典人

Fig. 13 Chemical reaction of imidazole at the silver substrate surface to form single-layer film of coordination polymers (Reprinted with permission from Ref.[67]; Copyright (1988) American Chemical Society)

Fig. 14 Cellulose-based and chitin-based fibers, films, microspheres, sol-gel, gas-gel, bio-plastics, and foam materials prepared *via* the low-temperature dissolution and physical regeneration method (Reprinted with permission from Ref.[74]; Copyright (2016) Elsevier; Reprinted with permission from Ref.[75]; Copyright (2018) Elsevier)

Kasemo利用Navier-Stocks方程发展了定量测量液 相中石英振荡的能量耗散的技术,发明了带有耗 散测量功能的石英晶体微天平(QCM-D),不但能 给出薄膜厚度或质量变化的信息,而且能够反映 薄膜结构的变化.2004年,张广照等利用QCM-D技术研究液-固界面上高分子链构象变化,确定 了QCM-D中频率变化和能量耗散变化这2个测量 参数的意义,即前者对应于链的溶剂化(如水化/ 脱水),而后者对应链本身的构象变化(塌陷/伸 展)^[76].该工作为QCM-D研究高分子溶液与界面的 行为奠定了基础,之后包括剑桥大学、美国国家 标准局等在内的许多高校和研究结构纷纷用该技 术研究高分子的构象行为、吸附、降解、相互作 用等,目前该技术已推广应用于医药、环境、农 业等多个领域^[77].

热力学可从能量变化的角度确定大分子单链 构象变化过程和状态.2005年,张广照等用超灵 敏的微量量热技术(0.08 μJ/s)通过浓度和扫描速 度外推的方法,获得了无限稀释溶液中高分子链 在热力学(准)平衡状态下的焓变、熵变和构象转 变温度,即高分子单链的热力学函数,为高分子 溶液热力学研究提供了地标^[78,79].

环境对大分子的结构与性质具有重要的影响. 西南交通大学崔树勋课题组发现在非极性溶剂 中,高分子的单链弹性是由其主链决定的,据此 提出了高分子单链本征弹性的概念.以高分子本 征弹性为基准,可以研究其他环境对高分子行为 的影响.他们发现在非极性溶剂中,生物大分子 的超分子结构失稳,转变为无超分子结构的状 态^[80,81];发现水是一个重要的开关,调控着生物 大分子的超分子结构和功能^[82,83].他们提出了生 物大分子的水环境适应性概念,提出是否具备水 环境适应性是生物大分子和合成水溶性高分子的 本质差别.他们进一步在高真空环境中研究了侧 链对高分子单链弹性的影响.发现在高真空环境 中,由于没有溶剂分子的干扰,苯环的效应开始 显现出来: PS链内的间隔(every-other)苯环之间 会形成有序的π-π堆积(E型堆积).随着外力的增 加,E型堆积会被逐渐破坏;与此同时,PS链内 的相邻(adjacent)苯环之间会形成一种新的π-π堆 积(A型堆积)^[84],如图15所示.研究表明,外力不 仅影响高分子的链构象,还是调节高分子非共价 作用的重要"开关".这一研究高分子非共价作用 的新范式还可以用于研究其它类型的非共价作用.

合成与天然高分子具有复杂的多尺度结构和 动力学,其精准表征既具极大挑战性又不可或缺. 固体NMR技术利用核自旋探针的多尺度特性,可 以检测从原子至100 nm以及10⁻⁹~10² s的空间和 时间尺度上的丰富结构和动力学信息.南开大学 孙平川课题组发展了表征高分子和生物大分子中

Fig. 15 Illustration of π - π interactions of polystyrene single polymer studied by single molecular force spectroscopy (Reprinted with permission from Ref.[84]; Copyright (2019) American Chemical Society)

多尺度结构和动力学的一系列固体NMR新技术, 具体包括:多相聚合物中界面相组成与厚度、微 相分离的纳米结构与形貌的原位检测,不同类型 碳基团以及多种动态化学键的原位精准检测,动 力学编辑方法检测温敏高分子的界面受限相转变 等,在分子水平上为阐明高分子结构-性能关系提 供了重要表征手段^[85,86],如图16所示.

智能响应高分子随环境改变会做出链构象或 分子结构上的调整,进而表现为外在的宏观性质 变化, 广泛应用于药物缓释、智能传感、可控驱 动等领域. 红外光谱对基团相互作用极为敏感, 非常适于探讨智能响应高分子的响应性机制,但 一维红外光谱分析存在分辨能力低且谱峰重叠严 重等问题,无法有效提取分子水平上的结构变化 信息.复旦大学武培怡课题组基于随环境外扰变 化的一维动态红外光谱,二维相关红外光谱通过 相关性运算将与外扰相关的谱峰信息从二维尺度 上提取出来,很好地区分了一维谱峰下不明显的 峰数目和峰位置,并可利用Noda规则辨识不同基 团的响应次序,从而广泛应用于研究智能响应高 分子的结构与构象变化,如水溶性高分子LCST 相分离、水凝胶体积转变、液晶高分子相转变 等,如图17所示.二维相关红外光谱特别适于研 究具有明显转变或突变特征的响应高分子体系[87]. 例如,利用二维相关红外光谱,聚(N-异丙基丙 烯酰胺)水溶液相转变过程中的氢键类型转化及甲 基两步脱水合过程[88]、聚甲基丙烯酸寡聚乙二醇 酯水溶液LCST温度前后4个阶段的分子链构象衍

Fig. 16 Illustration of multi-scale structure and dynamics of macromolecules characterized by new techniques of solid-state NMR (Reprinted with permission from Ref.[86]; Copyright (2014) American Chemical Society)

Fig. 17 2D correlation IR spectroscopy applied in the spectral analysis of smart responsive transitions in polymers (Reprinted with permission from Ref.[87]; Copyright (2017) Springer Nature)

化^[89]、氢键作用导致的核壳结构温敏微凝胶线性体积转变^[90],以及两性离子共聚物水凝胶仿生皮肤组分比例改变带来的UCST/LCST转变的分子水平机制^[91]等均被成功解析出来.

直接在单个分子水平研究高分子晶体中链段 的折叠模式及外力诱导下的解折叠过程,对于揭 示结晶机制以及建立链结构与力学性质的关系等 具有重要意义.利用传统方法非常难于研究聚合 物单晶表面无定形链环(loop)的结构及排布方 式,因此难于揭示链折叠机制,使得相关认识充 满了矛盾.同样,由于高分子材料结构的复杂 性,直接建立链结构与晶体力学性质的联系充满 挑战. 吉林大学张文科和清华大学张希等通过将 原子力显微镜(AFM)的成像定位与单分子操纵功 能相结合,并采用适宜的样品制备方法,在国际 上率先发展了可用于高分子单晶中链内、链间相 互作用及折叠模式研究的新方法^[92,93],如图18(a) 所示.利用该方法成功揭示了晶区链构象、链组 成等对晶体中高分子链折叠的力学稳定性和力致 熔融过程中链段运动模式的影响规律[94,95],如图 18(b)所示. 通过对比研究溶液及熔融相获得的单 晶,发现溶液相单晶主要采取近邻折叠而熔融相 单晶主要采取非近邻折叠模式, 澄清了关于高分 子晶体中链折叠模式的争议,如图18(c)所示.更 进一步地,他们还开发了空气相单分子力谱技 术,提高了力学测量精度及速度,并成功地捕捉 到高分子单晶在力致熔融过程中的中间态^[96].相 关研究深化了对高分子晶体中链折叠模式及结构 与力学性质关系的认识,为高分子单晶材料的设 计及纳米力学性质调控奠定了重要基础.

高分子材料因其长链特性导致的迥异于小分 子的"慢"动力学行为,使得很难采用常规的分子 模拟手段对高分子体系开展研究. 国际上该领域 的发展趋势是既要发展针对高分子体系的粗粒化 模型,也要开发高效率的模拟程序.然而如何实 现二者兼顾,始终面临着巨大挑战.新一代GPU 包含数千个计算核心,带来了运算能力上巨大的 飞跃. 吉林大学吕中元课题组和中国科学院长春 应用化学研究所孙昭艳课题组共同发展了基于 CUDA计算架构的一系列分子动力学模拟方法和 算法,编写了完全基于GPU计算的GALAMOST 软件,既充分利用了GPU的计算能力,又有机结合 了高分子模拟的创新模型和方法,实现了在同样 资金投入下提高模拟尺度2个数量级,突破了传统 高分子体系分子模拟的时空限制[97]. GALAMOST 软件已在嵌段共聚物自组装与微相分离、活性聚 合反应微观动力学及其对链结构的影响、补丁粒 子的设计及其自组装结构与动力学机理等方面有 重要应用,可研究高分子在溶液和受限条件下的 生长、组装、结构转变等问题以及高分子玻璃化 转变微观机理等问题^[98],如图19所示.目前该软 件的国内外用户超过300人;利用该软件开展研 究工作并发表在相关学科国际核心杂志上的学术论 文超过60篇.GALAMOST已成为具有国际竞争力的 代表性国产分子动力学模拟软件(http://galamost. ciac.jl.cn/).

超高速扫描(> 10⁴ K/s)高灵敏量热技术的发

展,为人们通过调制热处理程序,特别是利用超 快热处理,探索亚稳态新材料的研究提供了新的 独特手段,在高分子、有机小分子、金属玻璃及 纳米复合物材料领域已取得重要应用.在此基础 上,亟需与显微结构表征技术联用,以获得高速 热处理过程中材料的结构转变信息.南京大学 周东山课题组将Tube-Dewar型样品室改为冷热台 型,并设有反射和透射光通道,使高速扫描及交 流差分量热仪均可与多种微结构表征手段联用, 实现原位结构分析^[99].进一步使用液滴强化冷却 方式、FPGA技术、模块化设计,可实现更高的

Fig. 18 (a) AFM single molecule force spectroscopy to study (b) polymer chain structures, chain compositions and (c) folding types in their influences to the nano-mechanical properties (Reprinted with permission from Ref.[94]; Copyright (2019) American Chemical Society; Reprinted with permission from Ref.[95]; Copyright (2018) American Chemical Society) Society; Reprinted with permission from Ref.[96]; Copyright (2018) American Chemical Society)

Fig. 19 GALAMOST (GPU-Accelerated Large-Scale Molecular Simulation Toolkit) including many original methods and algorisms of molecular dynamics simulations, and helping to solve the structure and dynamic problems of phase separation and self-assembly in polymer systems^[98] (http://galamost.ciac.jl.cn/)

可控降温速率(> 10⁶ K/s)及更多样更便捷的技术 联用方式^[100](图20),已获包括美国专利在内的多 项专利授权,具有自主知识产权.高分子材料或 者金属材料的生产加工过程中通常伴随着制品的 淬冷过程(10⁰~10⁷ K/s),高速量热仪可对该过程 进行实验模拟.通过与多种显微表征技术联用(光 学显微镜、拉曼光谱及X射线衍射等),可以更准 确地获得材料在不同热处理过程中结构的变化、 亚稳态的形成及多相转变等信息.

交联液晶高分子兼具液晶的各向异性和高分子网络的弹性,当引入光敏基团后,通过协同作用可将光化学反应引起的微观结构变化放大为宏观形变,在构筑光控柔性器件方面具有显著优势. 然而,由于需通过化学交联固定分子取向,难以加工微量液体操控所需的三维通道和微纳结构.因此必须开发新型液晶高分子,力求在去除化学交联的同时保持良好的分子取向与力学强度.复旦大学俞燕蕾课题组将光响应液晶高分子与微纳阵列结构结合,实现了界面粘附性的快速光调控^[101].通过开环易位聚合法制备出高分子量的光响应线型液晶高分子,可自发排列成层状近晶相,提供物理交联作用,具有优异的形变性能和机械性能.利用其构筑的微管执行器可发生光致 轴向不对称形变,驱动液体自发向微管的窄端运动,建立起一种全新概念的光控微流体新技术,如图21所示.此方法突破了传统光致形变液晶高分子化学交联的局限性,利用液晶的层状结构作为物理交联提升材料的力学性能,同时兼容高分子通用的溶液和熔融加工方法,开拓了"光致形变线型液晶高分子"新方向,为构筑三维结构的柔性器件提供了全新的材料体系.他们进一步提出采用响应性材料构筑微型管状系统的创新理念,实现了对各种复杂流体的光控高效输运,由于其兼具流体通道和驱动泵的双重功能,能够为微流控系统"瘦身",是真正可达到实用效果的光控微流体技术.

胶体粒子在高分子非牛顿流体中的扩散行为 在实验上与理论上仍然都是挑战. 华南理工大学 童真课题组采用微流变观测探针胶体粒子在明胶 溶液凝胶化点近旁的动态行为,发现胶体粒子的 扩散仅在溶胶-凝胶转变的临界凝胶化点处,无尺 寸依赖性;胶体粒子的非高斯扩散行为是粒子的 运动尺度与复杂流体的相关长度耦合的结果;由 胶体粒子位移的概率密度分布函数得到扩散系数 分布,表明其非高斯行为源于流体中2种黏度不 同的环境^[102,103],如图22所示.由于在动态非均匀

Fig. 20 Combination of hot-stage fast-scan calorimetry with microscopic characterization techniques (Reprinted with permission from Ref.[99]; Copyright (2014) AIP Publishing)

Fig. 21 (a) Chemical structures of liquid crystalline polymers for photo-induced deformation; (b) Layer structure selfassembled by liquid crystalline polymers as revealed by TEM (left) and X-ray diffraction (right); (c) Microtube actuators with different shapes; (d) Deformation of microtube from cylinder to corn under gradient blue light, which drives liquid moving towards the narrow end; (e) Intersectional area increased by the re-orientations of liquid crystalline mesogens in the microtube wall, in alignment with the light propagation under 470 nm shinning (Reprinted with permission from Ref.[101]; Copyright (2016) Springer Nature)

Fig. 22 Inhomogeneity in the dynamics of colloid particles upon the coupling changes of dynamic correlation lengths with the gelation time t_w and the observation time t during the gelation of gelatin (Reprinted with permission from Ref.[103]; Copyright (2018) The Royal Society of Chemistry)

性的复杂流体中连续性假设与牛顿流体假设均被 破坏,胶体粒子的扩散行为不能直接反映流体的 状态.微观黏度与动态非均匀复杂流体将成为一 个全新的研究领域,给胶体物理与高分子流体理 论的原有模型提出了新的问题,有望激发新的探 索热点.同时,在高分子溶液或熔体中添加微纳 尺寸的胶体粒子已是常用的改性手段,食品行业 中也大量使用含有胶体粒子的非均匀流体悬浮液. 因此,胶体粒子在复杂流体中的动态行为具有广 泛的工业应用前景.

高性能纤维和薄膜既是国防、航空航天等领 域的关键战略材料,也是能源、信息和轻工等行 业发展的基础支撑材料.目前我国相关产业仍面临着中低端过剩与高端依赖进口的严峻形势,究 其原因是相关产业基础研究薄弱,技术创新乏力. 提升高分子制品性能和预测其服役行为是我国高 分子行业发展所亟待解决的问题.中国科学技术 大学李良彬课题组得益于同步辐射和探测技术的 快速发展,结合模拟工业加工的原位拉伸和剪切 等装置,发展了先进的同步辐射表征技术,如图23 所示: (a)高时间分辨的SAXS/WAXS (0.5 ms)原 位研究温度、拉伸等外场诱导高分子成核生长; (b)高空间分辨X射线衍射(1.5 μm)和偏振红外谱 学显微技术(4 μm)原位研究成核生长和结构与性

Fig. 23 (a) Illustration of microfocus installation and experimental approach; (b) Illustration of *in situ* X-ray scattering experiments; (c) Illustration of 3D image results of X-ray scattering experiments; (d) Photography of the on-the-beamline injection installment for the study of film-blowing

能关系; (c)高空间分辨X射线三维成像(30 nm) 原位研究橡胶填料网络结构与性能关系; (d)结合 高分子加工(挤出、吹膜、双拉)在线研究平台, 解决实际生产中的技术难题和产品开发.他们基 于同步辐射先进研究技术方法,构建了流动场诱 导结晶的热力学唯象理论和成核的多步有序分子 模型,系统研究了后拉伸加工中半晶高分子材料 的形变相变,提出分子链构象转变、无定形微相 分离、片晶簇屈曲等非线性力学行为的微观模 型,系统构建聚乙烯、聚丙烯和聚丁烯流动场诱 导结晶的流场-温度非平衡热力学相图与后拉伸的 拉伸场-温度加工相图,最终指导高性能高分子材 料的精确加工^[104].

4 结语

这篇综述旨在对高分子物理和表征这一研究 领域所取得的研究进展进行一个大致的梳理和总 结.所选择介绍的内容可能不足以覆盖改革开放 以来我国科学家在高分子物理和表征研究领域所 取得的所有重要成就,也未必能够代表未来的主 要研究方向.我们只希望读者能够从中看出一个 概貌,体会当代中国学者为推动这一基础研究领 域的进展所展现出来的坚强的拼搏意志和创新精 神,以鼓舞年轻人敢于做原创性的研究工作,勇 攀科学高峰,继续努力创造更美好的明天.

REFERENCES

- 1 Qian R Y. In: Allen G, Aggarwal S L, Russo S, eds. Comprehensive Polymer Science, Second Supplement. Oxford: Elsevier Science Ltd, 1996. 541 – 556
- 2 Qian Renyuan(钱人元), Wu Liheng(吴立衡). Progress in Chemistry(化学进展), 1996, (3): 176-188
- Bu H S, Pang Y W, Song D W, Yu T Y, Voll T M, Czornyj G, Wunderlich B. J Polym Sci, Part B: Polym Phys, 1991, 29(2): 139 152
- 4 Bu H S, Chen E, Xu S, Guo K, Wunderlich B. J Polym Sci, Part B: Polym Phys, 1994, 32(8): 1351 1357
- 5 Bu H S, Gu F M, Bao L R, Chen M. Macromolecules, 1998, 31(20): 7108 7110

- 6 Qian R Y, Wu L H, Shen D Y, Napper D H, Mann R A, Sangster D F. Macromolecules, 1993, 26(11): 2950 2953
- 7 Wu C, Zhou S Q. Phys Rev Lett, 1996, 77(14): 3053 3055
- 8 Wu C, Wang X H. Phys Rev Lett, 1998, 80(18): 4092 4094
- 9 Ye Xiaodong(叶晓东), Zhou Kejin(周科进), Wu Gi(吴奇). Acta Polymerica Sinica(高分子学报), 2017, (9): 1389-1399
- 10 Zhang G Z, Winnik F M, Wu C. Phys Rev Lett, 2003, 90(3): 035506
- 11 Ye X D, Lu Y J, Shen L, Ding Y W, Liu S L, Zhang G Z, Wu C. Macromolecules, 2007, 40(14): 4750 4752
- 12 Hu W B. J Chem Phys, 1998, 109(9): 3686 3690
- 13 Zhu Ziting(朱子霆), Gao Huanhuan(高欢欢), Hu Wenbing(胡文兵). Acta Polymerica Sinica(高分子学报), 2017, (9): 1471-1478
- 14 Yang Y L. Macromol Theory Simul, 1998, 7: 521 549
- 15 Yang Y Z, Qiu F, Zhang H D, Yang Y L. Macromolecules, 2017, 50(10): 4008 4022
- 16 Lu Y Y, Shi T F, An L J, Wang Z G. EPL, 2012, 97(6): 64003
- 17 Lu Y Y, An L J, Wang Z G. Macromolecules, 2013, 46(14): 5731 5740
- 18 Li J, Nie Y J, Ma Y, Hu W B. Chinese J Polym Sci, 2013, 31(11): 1590 1598
- 19 Li J, Hu W B. Polym Int, 2015, 64(1): 49 53
- 20 Li J, Ma Y, Hu W B. Mol Simul, 2015, 42(4): 321 327
- 21 Zhou Q F, Li H M, Feng X D. Macromolecules, 1987, 20(1): 233 234
- 22 Zhou Q F, Zhu X L, Wen Z Q. Macromolecules, 1989, 22(1): 491 493
- 23 Chen X F, Shen Z H, Wan X H, Fan X H, Chen E Q, Ma Y, Zhou Q F. Chem Soc Rev, 2010, 39(8): 3072 3101
- 24 Hou Pingping(候平平), Zhang Zhenyu(张振宇), Ping Jing(平静), Shen Zhihao(沈志豪), Fan Xinghe(范星河), Zhou Qifeng(周其凤). Acta Polymerica Sinica(高分子学报), 2017, (10): 1591 – 1608
- 25 Jiang M, Chen W J, Yu T Y. Polymer, 1991, 32(6): 984 989
- 26 Jiang M, Qiu X P, Qin W, Fei L. Macromolecules, 1995, 28(3): 730 735
- 27 Xiang M L, Jiang M, Zhu L, Zhang Y B, Wu C, Feng L X. Macromolecules, 1997, 30(18): 2313 2319
- 28 Zhu L, Jiang M, Liu L. J Macroml Sci Phys, 1998, B37(6): 827 839
- 29 Jiang M, Li M, Xiang ML, Zhou H. Adv Polym Sci, 1999, 146: 121 196
- 30 Fu Q, Wang G H. Polym Eng Sci, 1992, 32(2): 94 97
- 31 Fu Q, Wang G H. Polym Int, 1993, 30(3): 309 312
- 32 Lin J P, Lin S L, Liu P H, Hiejima T, Furuya H, Abe A. Macromolecules, 2003, 36(16): 6267 6272
- 33 Lin J P, Lin S L, Zhang L S, Nose T. J Chem Phys, 2009, 130(9): 094907
- 34 Cai C H, Li Y L, Lin J P, Wang L Q, Lin S L, Wang X S, Jiang T. Angew Chem Int Ed, 2013, 52(30): 7732 7736
- 35 Zhuang Z L, Jiang T, Lin J P, Gao L, Yang C Y, Wang L Q, Cai C H. Angew Chem Int Ed, 2016, 55(40): 12522 – 12527
- 36 Yu B, Sun P, Chen T, Jin Q, Ding D, Li B H, Shi A C. Phys Rev Lett, 2006, 96(13): 138306
- 37 Yu B, Li B H, Jin Q, Ding D, Shi A C. Macromolecules, 2007, 40(25): 9133 9142
- 38 Shi A C, Li B H. Soft Matter, 2013, 9(5): 1398 1413
- 39 Cheng X Y, Lin L, Weinan E, Zhang P W, Shi A C. Phys Rev Lett, 2010, 104(14): 148301
- 40 Lin L, Chen X Y, Weinan E, Shi A C, Zhang P W. J Comp Phys, 2010, 229(5): 1797 1809
- 41 Wang C, Jiang K, Zhang P W, Shi A C. Soft Matter, 2011, 7(22): 10552 10555
- 42 Xie N, Liu M J, Deng H L, Li W H, Qiu F, Shi A C. J Am Chem Soc, 2014, 136(8): 2974 2977
- 43 Gao Y, Deng H L, Li W H, Qiu F, Shi A C. Phys Rev Lett, 2016, 116(6): 068304
- 44 Wang J, Li H, Liu J, Duan Y, Jiang S, Yan S. J Am Chem Soc, 2003, 125(6): 1496 1497
- 45 Xin R, Zhang J, Sun X, Li H, Qiu Z, Yan S. Adv Polym Sci, 2017, 277: 55 94
- 46 Hu J, Xin R, Hou C, Yan S. Macromol Chem Phys, 2019, 220(5): 1800478
- 47 Su Y L, Liu G M, Xie B Q, Fu D S, Wang D J. Acc Chem Res, 2014, 47(1): 192 201
- 48 Shi H F, Zhao Y, Dong X, Zhou Y, Wang D J. Chem Soc Rev, 2013, 42(5): 2075 2099
- 49 Zhao K, Xue L J, Liu J G, Gao X, Wu S P, Han Y C, Geng Y H. Langmuir, 2010, 26(1): 471 477
- 50 Chen L, Zhao K F, Cao X X, Liu J G, Yu X H, Han Y C. Polymer, 2018, 149: 23 29
- 51 Yang H, Zhang R, Wang L, Zhang J D, Yu X H, Liu J G, Xing R B, Geng Y H, Han Y C. Macromolecules, 2015, 48(20): 7557 7566
- 52 Hu Wenbing(胡文兵). Introduction of Polymer Physics(高分子物理导论). Beijing(北京): Science Publisher(科学出版 社), 2011

- 53 Hu W B. Polymer Physics: A Molecular Approach. Wien: Springer Verlag, 2013
- 54 Ren Y J, Ma A Q, Li J, Jiang X M, Ma Y, Toda A, Hu W B. Eur Phys J E, 2010, 33(3): 189 202
- 55 Hu Wenbing(胡文兵). Principles of Polymer Crystallization(高分子结晶学原理). Beijing(北京): Chemical Technology Press(化工出版社), 2013
- 56 Hu W B. Phys Rep, 2018, 747: 1 50
- 57 Zha L, Hu W B. Prog Polym Sci, 2016, 54 55: 232 258
- 58 Hu W B, Mathot V B F, Alamo R G, Gao H H, Chen X J. Adv Polym Sci, 2017, 276: 1 43
- 59 Men Y F, Rieger J, Strobl G. Phys Rev Lett, 2003, 91(9): 095502
- 60 Wang Y, Jiang Z, Wu Z, Men Y F. Macromolecules, 2013, 46(2): 518 522
- 61 Lu Y, Men Y F. Chinese J Polym Sci, 2018, 36(10): 1195 1199
- 62 Lu Y, Men Y F. Macromol Mater Eng, 2018, 303(11): 1800203
- 63 Lu Y, Wang Y, Chen R, Zhao J, Jiang Z, Men Y F. Macromolecules, 2015, 48(16): 5799 5806
- 64 Yu W, Zhou C X. J Rheol, 2007, 51(2): 179 194
- 65 Yu W, Zhou W, Zhou C X. Polymer, 2010, 51(9): 2091 2098
- 66 Song Y H, Zheng Q. Prog Mat Sci, 2016, 84: 1 58
- 67 Xue G, Dai Q P, Jiang S G. J Am Chem Soc, 1988, 110(8): 2393 2395
- 68 Xue G, Zhang J F. Appl Spec, 1991, 45(5): 760 764
- 69 Xue G, Dong J, Zhang J F. Macromolecules, 1991, 24(14): 4195 4198
- 70 Zhou D S, Zhang J F, Li L, Xue G. J Am Chem Soc, 2003, 125(39): 11774 11775
- 71 Teng C, Li L, Wang Y, Wang R, Chen W, Wang X, Xue G. J Chem Phys, 2017, 146(20): 203319
- 72 Cai J, Zhang L N, Liu S L, Liu Y T, Xu X J, Chen X M, Chu B, Guo X L, Xu J, Cheng H, Han C C, Kuga S. Macromolecules, 2008, 41(23): 9345 9351
- 73 Fang Y, Duan B, Lv A, Liu M L, Liu H L, Xu X J, Zhang L N. Biomacromolecules, 2015, 16(4): 1410 1417
- 74 Wang S, Lu A, Zhang L N. Prog Polym Sci, 2016, 53: 169 206
- 75 Duan B, Huang Y, Lu A, Zhang L N. Prog Polym Sci, 2018, 82: 1 33
- 76 Zhang G Z. Macromolecules, 2004, 37(17): 6553 6557
- 77 Zhang Guangzhao(张广照), Liu Guangming(刘光明). Quartz Crystal Microbalance: Principles and Applications(石英 晶体微天平: 原理与应用), Beijing(北京): Science Publisher(科学出版社), 2015
- 78 Ding Y W, Ye X D, Zhang G Z. Macromolecules, 2005, 38(3): 904 908
- 79 Ding Y W, Zhang G Z. Macromolecules, 2006, 39(26): 9654 9657
- 80 Cui S X, Albrecht C, Kühner F, Gaub H E. J Am Chem Soc, 2006, 128(20): 6636 6639
- 81 Cui S X, Yu J, Kühner F, Schulten K, Gaub H E. J Am Chem Soc, 2007, 129(47): 14710 14716
- 82 Cui S X. Phys Chem Chem Phys, 2010, 12: 10147 10153
- 83 Qian L, Bao Y, Duan W, Cui S X. ACS Macro Lett, 2018, 7(6): 672 676
- 84 Cai W, Xu D, Qian L, Wei J, Xiao C, Qian L, Lu Z Y, Cui S. J Am Chem Soc, 2019, 141(24): 9500 9503
- Li B, Xu L, Wu Q, Chen T, Sun P C, Jin Q, Ding D, Wang X, Xue G, Shi A C. Macromolecules, 2007, 40(16): 5776 5786
- 86 Wang F, Zhang R, Wu Q, Chen T, Sun P C, Shi A C. ACS Appl Mater Interfaces, 2014, 6(23): 21397 21407
- 87 Sun S, Wu P Y. Chinese J Polym Sci, 2017, 35(6): 700 712
- 88 Sun B, Lin Y, Wu P Y, Siesler H W. Macromolecules, 2008, 41(4): 1512 1520
- 89 Sun S, Wu P Y. Macromolecules, 2013, 46(1): 236 246
- 90 Hou L, Ma K, An Z, Wu P Y. Macromolecules, 2014, 47(3): 1144 1154
- 91 Lei Z, Wu P Y. ACS Nano, 2018, 12(12): 12860 12868
- 92 Liu K, Song Y, Feng W, Liu N N, Zhang W K, Zhang X. J Am Chem Soc, 2011, 133(10): 3226 3229
- 93 Song Y, Feng W, Liu K, Yang P, Zhang W K, Zhang X. Langmuir, 2013, 29(12): 3853 3859
- 94 Song Y, Ma Z W, Yang P, Zhang X, Lyu X J, Jiang K, Zhang W K. Macromolecules, 2019, 52(3): 1327 1333
- 95 Lyu X J, Song Y, Feng W, Zhang W K. ACS Macro Lett, 2018, 7(6): 762 766
- 96 Yang P, Song Y, Feng W, Zhang W K. Macromolecules, 2018, 51(18): 7052 7060
- 97 Zhu Y L, Liu H, Li Z W, Qian H J, Milano G, Lu Z Y. J Comput Chem, 2013, 34(25): 2197 2211
- 98 Zhu Y L, Pan D, Li Z W, Liu H, Qian H J, Zhao Y, Lu Z Y, Sun Z Y. Mol Phys, 2018, 116(78): 1065 1077
- 99 Wei L, Jiang J, Shan M, Chen W, Deng Y, Xue G, Zhou D S. Rev Sci Instrum, 2014, 85: 074901

100	Luo S C, Kui X, Xin E R, Wang X L, Xue G, Schick C, Hu W B, Zhuravlev E, Zhou D S. Macromolecules, 2018
	51(14): 5209 - 5218

101 Lv J, Liu Y, Wei J, Chen E Q, Qin L, Yu Y L. Nature, 2016, 537(7619): 179 - 184

103 Hong W, Xu G, Ou X, Sun W, Wang T, Tong Z. Soft Matter, 2018, 14(19): 3694 - 3703

The Development of Polymer Physics and Characterization in Mainland China since Reform and Opening

Li-jia An¹, Er-giang Chen², Shu-xun Cui³, Xia Dong⁴, Qiang Fu⁵, Yan-chun Han¹, Jia-song He⁴, Wen-bing Hu⁶, Zu-ming Hu⁷, Ming Jiang⁸, Bao-hui Li⁹, Liang-bin Li¹⁰, Lin Li¹¹, Wei-hua Li⁸, Jia-ping Lin¹², Zhong-yuan Lv¹³, Yong-feng Men¹, Zhi-hao Shen², Ping-chuan Sun⁹, Zhen Tong¹⁴, Du-jin Wang^{4*}, Pei-yi Wu⁷, Xu-ming Xie¹⁵, Jian Xu⁴, Zhi-kang Xu¹⁶, Gi Xue⁶, Shou-ke Yan¹⁷, Yu-liang Yang⁸, Wei Yu¹⁸, Yan-lei Yu⁸, Guang-zhao Zhang¹⁴, Jun Zhang⁴, Li-na Zhang¹⁹, Ping-wen Zhang², Wen-ke Zhang¹³, Jiang Zhao⁴, Qiang Zheng¹⁶, Dong-shan Zhou⁶ (¹Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022) (²College of Chemistry and Molecular Engineering, Peking University, Beijing 100871) (³Key Lab of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031) (⁴Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190) (⁵College of Polymer Science and Engineering, Sichuan University, Chengdu 610065) (⁶School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023) (¹State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 200051) (⁸Department of Macromolecular Science, Fudan University, Shanghai 200433) (⁹School of Physics, Nankai University, Tianjin 300071) (¹⁰National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026) (¹¹College of Chemistry, Beijing Normal University, Beijing 100875) (¹²School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237) (¹³Institute of Theoretical Chemistry, Jilin University, Changchun 130023) (¹⁴Department of Polymer Science and Engineering, South China University of Technology, Guangzhou 510640) (¹⁵Department of Chemical Engineering, Tsinghua University, Beijing 100084) (¹⁶Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027) (¹⁷College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029) (¹⁸School of Chemistry and Chemical Technology, Shanghai Jiao Tong University, Shanghai 200240) (¹⁹College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072)

Abstract This paper made a survey on the research field of polymer physics and characterization achieved by the mainland Chinese community since reform and opening of China 40 years ago. The examples were selected for the brief introduction from three aspects: the breakthrough in concepts, the development in theories, and the innovation in techniques. It intended to highlight the creativity of modern Chinese scientists in this fundamental research field, in order to encourage young scientists or scholars to take the bigger challenges in scientific research, and to make more contributions in national economy and social development.

Keywords Polymer physics, Polymer characterization, Phase separation, Crystallization, Rheological and mechanical properties

¹⁰² Hong Wei(洪伟), Xu Guozhi(许国智), Sun Weixiang(孙尉翔), Tong Zhen(童真). Acta Polymerica Sinica(高分子学报), 2017, (9): 1488 - 1496

¹⁰⁴ Cui K P, Ma Z, Tian N, Su F M, Liu D, Li L B. Chem Rev, 2018, 118(4): 1840 – 1886

^{*}Corresponding authors: Wen-bing Hu, E-mail: wbhu@nju.edu.cn

Du-jin Wang, E-mail: djwang@iccas.ac.cn