80电影天堂网,少妇高潮一区二区三区99,jαpαnesehd熟女熟妇伦,无码人妻精品一区二区蜜桃网站

相關(guān)鏈接
聯(lián)系方式
  • 通信地址:上海市邯鄲路220號
  • 郵編:200433
  • 電話:021-31242866
  • 傳真:021-31242866
  • Email:chenx@fudan.edu.cn
當(dāng)前位置:> 首頁 > 論文著作 > 正文
Robust Soy Protein Films Obtained by Slight Chemical Modification on Polypeptide Chains
作者:Ma L, Yang YH, Yao JR*, Shao ZZ, Chen X*
關(guān)鍵字:Soy protein
論文來源:期刊
具體來源:Polymer Chemistry, 2013, 4(21): 5425-5431
發(fā)表時間:2013年
Soy protein based materials are of great interest because of the merits of biocompatibility, biodegradability, renewability, etc. However, the poor mechanical properties and high water sensitivity limit their further application in many fields. In this paper, we tried to overcome these shortcomings through a slight chemical modification of the polypeptide chains of soy protein. P-31 NMR and solid state C-13 CP/MAS NMR spectroscopy confirmed that the diethoxy phosphoryl groups were successfully grafted onto soy protein chains with a molar grafting ratio of 0.15-1.18%, which almost did not change the nature of soy protein. The isoelectric point and rheological behavior of the modified soy protein sample varied with the grafting ratio, indicating that the tertiary structure of the protein was changed after phosphoryl modification. The FTIR spectra of the modified soy protein suggested that the increase of beta-sheet conformation from the slight chemical modification could be the reason for the change of the globular structure of soy protein. Finally, we obtained a robust soy protein film as expected, and we did not use any crosslinking agent and plasticizer that were almost unavoidable in the previous studies reported in the literature. The tensile strength and the elongation at break of our soy protein films were 35 +/- 5 MPa, 2.5 +/- 0.5% in the dry state, and 3.8 +/- 1.5 MPa, 125 +/- 5% in the wet state, respectively. We believe that the method we developed in this communication provides a practical approach to improve the mechanical properties and broaden the applications of natural soy protein based materials.