80电影天堂网,少妇高潮一区二区三区99,jαpαnesehd熟女熟妇伦,无码人妻精品一区二区蜜桃网站

相關(guān)鏈接
聯(lián)系方式
  • 通信地址:上海市松江區(qū)人民北路2999號(hào) 東華大學(xué)材料學(xué)院
  • 郵編:201620
  • 電話:86-21-55664197
  • 傳真:
  • Email:txliu@fudan.edu.cn
當(dāng)前位置:> 首頁 > 論文著作 > 正文
238. Quasi-one-dimensional graphene nanoribbon-supported MoS2 nanosheets for enhanced hydrogen evolution reaction.
作者:H. H. Gu, L. S. Zhang, Y. P. Huang, Y. F. Zhang, W. Fan*, T. X. Liu*
關(guān)鍵字:graphene nanoribbons, MoS2, hybrids, HER
論文來源:期刊
具體來源:RSC Adv., 2016, 6(17), 13757-13765.
發(fā)表時(shí)間:2016年
Electrolysis of water is a sustainable and environmentally friendly way to produce hydrogen, which has motivated people to develop efficient and earth-abundant electrocatalysts that minimize energy consumption. Herein, graphene nanoribbon@MoS2 (GNR@MoS2) hybrids with hierarchical structure have been facilely fabricated as efficient electrocatalysts for the hydrogen evolution reaction (HER). Derived from longitudinally unzipping of multi-walled carbon nanotubes, GNR sheets can provide a greater surface area for the decoration of MoS2, which not only stems from the outer wall sheets, but also from the additional exfoliated inner wall space, as well as from the unique ribbon edges. Furthermore, the interconnected GNR sheets can form a conductive pathway for fast electron transportation and an open structure for convenient electrolyte permeation. As a consequence, the GNR@MoS2 hybrids exhibit excellent electrochemical activity as HER catalysts with a low onset potential of 0.11 V vs. the reversible hydrogen electrode and a small Tafel slope of 43.4 mV per decade. The outstanding electrocatalytic performance of the GNR@MoS2 hybrids can be ascribed to their unique hierarchical architecture with numerous active sites, as well as synergistic effects between the electrocatalytic MoS2 nanosheets and conductive GNR framework, making them promising materials for future electrocatalysts in the HER.