80电影天堂网,少妇高潮一区二区三区99,jαpαnesehd熟女熟妇伦,无码人妻精品一区二区蜜桃网站

相關鏈接
聯(lián)系方式
  • 通信地址:陜西省西安市未央?yún)^(qū)北大學城陜西科技大學
  • 郵編:710021
  • 電話:029-86168315
  • 傳真:
  • Email:liweihg@sust.edu.cn
當前位置:> 首頁 > 論文著作 > 正文
Synthesis of magnetically separable Fe3O4@PANI/TiO2 photocatalyst with fast charge migration for photodegradation of EDTA under visible-light irradiation
作者:W. Li, Y. Tian, C. Zhao, Q. Zhang, W. Geng
關鍵字:Photodegradation Heterojunction Visible-light Magnetic response Conducting polymer
論文來源:期刊
具體來源:http://dx.doi.org/10.1016/j.cej.2016.06.022
發(fā)表時間:2016年

The polyaniline(PANI)/TiO2 composite coating was successfully synthesized on the surface of magnetic Fe3O4 particles by ammonium persulfate induced in situ chemical oxidative polymerization of aniline and in situ synthesis of TiO2. Research showed that this novel Fe3O4@PANI-TiO2 composite photocatalyst exhibited fast charge migration ability and enhanced photoactivity. When the content of anatase TiO2 nanoclusters in the PANI coating was about 0.3 g, the highest photoactivity (k = 1.97  10–2 min–1), which is about 4.6 times of the Fe3O4@PANI composite particles, was obtained for decomposing ethylenediaminetetraacetic acid (EDTA) under visible-light irradiation. The enhancement of photoactivity was mainly due to the successful formation of PANI-TiO2 heterojunctions and fast charge migration ability of PANI coating. In photocatalytic process, the photoexcited electrons in PANI could migrate to the conduction band (CB) of anatase TiO2, and the photogenerated holes in the valence band (VB) of anatase TiO2 could directly transfer to the HOMO of PANI. Therefore, the direct recombination of electron-hole pairs would be effecctively inhibited, and both the light response and electrical characteristics were improved for the successful formation of the PANI-TiO2 heterojunctions. More importantly, the introduction of the magnetic Fe3O4 particles could satisfy the simple separation and fulfill the regeneration of the photocatalyst after being used.

                                 W. Li et al. / Chemical Engineering Journal 303 (2016) 282–291