80电影天堂网,少妇高潮一区二区三区99,jαpαnesehd熟女熟妇伦,无码人妻精品一区二区蜜桃网站

當前位置:群英聚首 > 論文著作 > 正文
(ACS Appl. Mater. Interfaces)Controlled 3D Shape Transformation Activated by Room Temperature Stretching and Release of a Flat Polymer Sheet
來源:江金強教授個人網(wǎng)站 發(fā)布日期:2020-12-23
作者:ACS Appl. Mater. Interfaces
關(guān)鍵字:polymers, deformation-responsive polymers, shape change, shape memory, controlled plastic deformation, surface patterning
論文來源:期刊
具體來源:ACS Appl. Mater. Interfaces
發(fā)表時間:2019年

Shape transformation of polymeric materials, including hydrogels, liquid crystalline, and semicrystalline polymers, can be realized by exposing the shape-changing materials to the effect of a variety of stimuli such as temperature, light, pH, and magnetic and electric fields. Herein, we demonstrate a novel and different approach that allows a flat sheet or strip of a polymer to transform into a predesigned 3D shape or structure by simply stretching the polymer at room temperature and then releasing it from the external stress, that is, a 2D-to-3D shape change is activated by mechanical deformation under ambient conditions. This particular type of stimuli-controlled shape-changing polymers is based on suppressing plastic deformation in selected regions of the flat polymer sheet prior to stretching and release. We validated the design principle by using a polymer blend composed of poly(ethylene oxide) (PEO), poly(acrylic acid) (PAA), and tannic acid (TA) whose plastic deformation can be locally inhibited by surface treatment using an aqueous solution of copper sulfate pentahydrate (Cu2+ ink) that cross-links PAA chains through a Cu2+–carboxylate coordination and, consequently, increases the material’s Young’s modulus and yield strength. After room temperature stretching and release, elastic deformation in the Cu2+ ink-treated regions leads to 3D shape transformation that is controlled by the patterned surface treatment. This facile and effective “stretch-and-release” approach widens the scope of preparation and application for shape-changing polymers.

https://pubs.acs.org/doi/10.1021/acsami.9b10071

Copyright © 2005 Polymer.cn All rights reserved
中國聚合物網(wǎng) 版權(quán)所有
經(jīng)營性網(wǎng)站備案信息

京公網(wǎng)安備11010502032929號

工商備案公示信息

京ICP證050801號

京ICP備12003651號