80电影天堂网,少妇高潮一区二区三区99,jαpαnesehd熟女熟妇伦,无码人妻精品一区二区蜜桃网站

當前位置:群英聚首 > 論文著作 > 正文
Biocompatible hierarchical zwitterionic polymer brushes with bacterial phosphatase activated antibacterial activity
來源:袁帥帥副教授個人網(wǎng)站 發(fā)布日期:2023-09-05
作者:Liwei Sun, Lingjie Song*, Xu Zhang, Shuaishuai Yuan*, Shifang Luan
關(guān)鍵字:Bacterial infection,Self-adaptive surface,Bactericidal,Antifouling,Hierarchical polymer brushes
論文來源:期刊
具體來源:Journal of Materials Science & Technology
發(fā)表時間:2022年
Hierarchical polymer brushes have been considered as an effective and promising method for preventing implant-associated infections via multiple antibacterial mechanisms. Herein, a bacterial phosphatase re- sponsive surface with hierarchical zwitterionic structures was developed for timely dealing with the poly- meric implant-associated bacterial infection. The hierarchical polymeric architecture was subtly realized on model polypropylene (PP) substrate by sequential photo living grafting of poly (2-(dimethylamino) ethyl methacrylate (PDMAEMA) bottom layer and zwitterionic poly (sulfobetaine methacrylate) (PSBMA) upper layer, followed by the conversion of the PDMAEMA into the zwitterionic structure via succes- sive quaternization and phosphorylation reactions. Owing to shielding the bottom polycations, the hi- erarchical zwitterionic polymer brushes guaranteed the surface with the optimal biocompatibility under the normal physiological environment. Once bacteria are invaded, the surface bactericidal activity of the bottom layer can be rapidly and automatically activated owing to the transition triggered by bacterial phosphatase from zwitterion to polycation. Additionally, ameliorated by the upper layer, the hierarchical surface showed obvious adhesion resistance to dead bacterial cells and notably migrated the cytotoxic- ity of exposed polycation after completion of the bactericidal task. As a proof-of-principle demonstration, this self-adaptive hierarchical surface with sensitive bacterial responsiveness and biocompatibility showed great potential in combating hernia mesh-related infection. This work provides a promising and universal strategy for the on-demand prevention of medical device-associated infections.
Copyright © 2005 Polymer.cn All rights reserved
中國聚合物網(wǎng) 版權(quán)所有
經(jīng)營性網(wǎng)站備案信息

京公網(wǎng)安備11010502032929號

工商備案公示信息

京ICP證050801號

京ICP備12003651號