80电影天堂网,少妇高潮一区二区三区99,jαpαnesehd熟女熟妇伦,无码人妻精品一区二区蜜桃网站

當(dāng)前位置:群英聚首 > 論文著作 > 正文
Probing structure-antifouling activity relationship of polyacrylamide and polyacrylate
來(lái)源:陳強(qiáng)研究員、PI個(gè)人網(wǎng)站 發(fā)布日期:2014-01-16
作者:5. C. Zhao, Q. Chen, K. Patel, L. Li, X. Li, Q. Wang, G. Zhang, and J. Zheng
關(guān)鍵字:antifouling
論文來(lái)源:期刊
具體來(lái)源:Soft Matter, 8: 7848-7857
發(fā)表時(shí)間:2013年
We have synthesized two different polyacrylamide polymers with amide groups (polySBAA and polyHEAA) and two corresponding polyacrylate polymers without amide groups (polySBMA and polyHEA), with particular attention to the evaluation of the effect of amide group on the hydration and antifouling ability of these systems using both computational and experimental approaches. The influence of polymer architectures of brushes, hydrogels, and nanogels, prepared by different polymerization methods, on antifouling performance is also studied. SPR and ELISA data reveal that all polymers exhibit excellent antifouling ability to repel proteins from undiluted human blood serum/plasma, and such antifouling ability can be further enhanced by presenting amide groups in polySBAA and polyHEAA as compared to polySBMA and polyHEA. The antifouling performance is positively correlated with the hydration properties. Simulations confirm that four polymers indeed have different hydration characteristics, while all presenting a strong hydration overall. Integration of amide group with pendant hydroxyl or sulfobetaine group in polymer backbones is found to increase their surface hydration of polymer chains and thus to improve their antifouling ability. Importantly, we present a proof-of-concept experiment to synthesize polySBAA nanogels, which show a switchable property between antifouling and pH-responsive functions driven by acid–base conditions, while still maintaining high stability in undiluted fetal bovine serum and minimal toxicity to cultured cells. This work provides important structural insights into how very subtle structural changes in polymers can yield great improvement in biological activity, specifically the inclusion of amide group in polymer backbone/sidechain enables to obtain antifouling materials with better performance for biomedical applications.
Copyright © 2005 Polymer.cn All rights reserved
中國(guó)聚合物網(wǎng) 版權(quán)所有
經(jīng)營(yíng)性網(wǎng)站備案信息

京公網(wǎng)安備11010502032929號(hào)

工商備案公示信息

京ICP證050801號(hào)

京ICP備12003651號(hào)