80电影天堂网,少妇高潮一区二区三区99,jαpαnesehd熟女熟妇伦,无码人妻精品一区二区蜜桃网站

相關鏈接
聯(lián)系方式
  • 通信地址:陜西省西安市西北工業(yè)大學長安校區(qū)理學院446辦公室
  • 郵編:710129
  • 電話:+86-029-88431675
  • 傳真:029-88431675
  • Email:blzhang@nwpu.edu.cn
當前位置:> 首頁 > 論文著作 > 正文
Preparation of lipase/Zn3(PO4)2 hybrid nanoflower and its catalytic performance as an immobilized enzyme.
作者:Baoliang Zhang, Peitao Li, Hepeng Zhang, Hai Wang, Xiangjie Li, Lei Tian, Nisar Ali, Zafar Ali, Qiuy
關鍵字:Lipase,Hybrid nanoflower,Coordination,Immobilized enzyme,Precipitation reaction
論文來源:期刊
具體來源:https://doi.org/10.1016/j.cej.2016.01.104
發(fā)表時間:2016年
A facile and rapid method is reported in this paper to prepare a novel immobilized enzyme named lipase/Zn3(PO4)2 hybrid nanoflower. The growth mechanism of the nanoflower has been studied in detail and can be described as the following four steps: crystallization and coordination, in-situ precipitation, self-assembly, size growth. Addition amount of lipase, reaction temperature and stirring form affect the morphology and lipase content of the hybrid nanoflower. Besides, the catalytic performance of lipase/Zn3(PO4)2 hybrid nanoflower was investigated and the optimal catalytic conditions have been found. The maximum enzyme activity was 855 ± 13 U/g. In comparison with the free lipase, the enzyme activity increment of hybrid nanoflower is 147%. Meanwhile, the unique nanostructure makes lipase/Zn3(PO4)2 hybrid nanoflower an excellent operational stabilizer. The results indicate that the well-designed materials should be useful in industrial enzyme catalysis.