80电影天堂网,少妇高潮一区二区三区99,jαpαnesehd熟女熟妇伦,无码人妻精品一区二区蜜桃网站

相關(guān)鏈接
聯(lián)系方式
  • 通信地址:陜西省西安市西北工業(yè)大學(xué)長安校區(qū)理學(xué)院446辦公室
  • 郵編:710129
  • 電話:+86-029-88431675
  • 傳真:029-88431675
  • Email:blzhang@nwpu.edu.cn
當(dāng)前位置:> 首頁 > 論文著作 > 正文
Preparation of BSA surface imprinted manganese dioxide-loaded tubular carbon fibers with excellent specific rebinding to target protein
作者:Zuoting Yang, Junjie Chen, Ke Yang, Qiuyu Zhang, Baoliang Zhang
關(guān)鍵字:Surface protein imprinting BSA Flaky MnO2 Dopamine Self-driven adsorption
論文來源:期刊
具體來源:Journal of Colloid and Interface Science
發(fā)表時間:2020年

Along with the wide development of protein imprinted polymers, the researchers still face many challenges, such as difficult template elution, slow adsorption rate and low adsorption capacity. In order to promote the progress of protein separation and purification, the surface imprinted manganese dioxideloaded tubular carbon fibers (FTCFs@MnO2@MIPs) are prepared in this work. FTCFs@MnO2@MIPs are based on tubular carbon fibers (TCFs) coated with flaky MnO2. Dopamine (DA) and bovine serum albumin (BSA) are utilized as functional monomers and templates. The MnO2 nanosheets are grown and loaded on the surface of carboxyl-modified tubular carbon fibers (CMTCFs) to form a MnO2 shell, which provides more imprinting sites for protein imprinting. Meanwhile, this shell enhances the interaction between the imprinting sites and BSA. The content of MnO2 loaded on the surface of CMTCFs is 9.42%. The obtained materials are systematically characterized and the adsorption performances of FTCFs@MnO2@MIPs for BSA are investigated. The adsorption process of FTCFs@MnO2@MIPs exhibits significant self-driven characteristics. The adsorption capacity reaches 816.44 mg/g in 60 min and the imprinting factor (IF) is 3.31. FTCFs@MnO2@MIPs can selectively separate BSA from the mixed proteins and fetal bovine serum. Excellent reusability and practical application ability make MnO2-loaded tubular carbon fibers (FTCFs@MnO2) become a promising carrier in the field of protein imprinting.