80电影天堂网,少妇高潮一区二区三区99,jαpαnesehd熟女熟妇伦,无码人妻精品一区二区蜜桃网站

相關(guān)鏈接
聯(lián)系方式
  • 通信地址:江蘇省南京市東南大學(xué)路2號(hào)東南大學(xué)九龍湖校區(qū)
  • 郵編:211189
  • 電話:13914766900
  • 傳真:52090620
  • Email:jczhou@seu.edu.cn
當(dāng)前位置:> 首頁 > 論文著作 > 正文
Metal nanoparticles supported on WO3 nanosheets for highly selective hydrogenolysis of cellulose to ethylene glycol
作者:Li, NX (Li, Naixu)[ 1 ] ; Zheng, Y (Zheng, Yu)[ 1 ] ; Wei, LF (Wei, Lingfei)[ 1 ] ; Tenga, HC (Tenga
關(guān)鍵字:CATALYTIC CONVERSION; CARBIDE CATALYSTS; CRYSTAL-STRUCTURE; TUNGSTEN CARBIDE; REACTION NETWORK; BIOMASS; CHEMICALS; GLUCOSE; TRANSFORMATION; HYDROGENATION
論文來源:期刊
具體來源:GREEN CHEMISTRY
發(fā)表時(shí)間:2017年

Although the conversion of cellulose to polyols is currently well-developed, the production of the considerably valuable ethylene glycol (EG) is still challenging. Reactions have long relied on the design of suitable catalysts to obtain a high selectivity and yield of EG. Herein, using well-shaped rectangular tungsten trioxide nanosheets as the substrate, we investigated the catalytic performances of various metal supported catalysts for the convertion of cellulose to EG. Results show that Ru/WO3 is more favorable for EG production, with the highest EG yield of 76.3% over the 1% Ru/WO3 nanosheet catalyst. Our characterizations and activity tests suggest that the embedding of Ru nanoparticles onto the WO3 nanosheets produces more W5+ active sites under the same reduction conditions (NaBH4 or H-2), which act as Lewis base sites to promote the glucose retro-aldol condensation reaction. Moreover, the Ru/WO3 catalyst holds a portion of Ru in the form of amorphous RuOx delta+ phases, which could further increase the H+ released into an aqueous solution for cellulose hydrogenolysis. A possible catalytic mechanism for this hydrogenolysis process is accordingly proposed.