- Prof. Dr. Zhongsheng wen
- Dalian Maritime University
- Welcome to zswen.polymer.cn
- Visits:251724
keywords:CoPPc, Elastic layer, Buffering layer, High stability, High reversible capacity
source:期刊
specific source:Journal of Electroanalytical Chemistry
Issue time:2023年
MnO has the advantages of high theoretical capacity, abundant resources and environmental friendliness, which is a potential material for lithium-ion storage. However, severe volume expansion and sluggish kinetics make MnO difficult to maintain long-term stability. In this study, MnO/C@CoPPc micro-rods composed of coral-like MnO/C nanobundles coated with CoPPc was synthesized via facile method. CoPPc impregnated into the empty space and simultaneously coated on the surface of the needles of MnO/C functions as an elastic layer to accommodate the mechanical stress caused by volume expansion of MnO/C, and simultaneously function as a buffering layer to keep electric disconnection on cycling. The volume of MnO/C is dramatically suppressed from 370% to 120%, and the reversible capacity is improved. Therefore, the configured MnO/C@CoPPc exhibits a high stability and delivers a high reversible capacity of 679.6 mAh/g after 200 cycles.