學(xué)術(shù)經(jīng)歷:
(1). 2001.9-2005.7: 吉林大學(xué)化學(xué)學(xué)院,化學(xué)專(zhuān)業(yè),本科;
(2). 2005.9-2010.7: 吉林大學(xué)理論化學(xué)研究所,物理化學(xué)專(zhuān)業(yè),博士(導(dǎo)師:孫家鐘、呂中元);
(3). 2010.7-2018.12: 吉林大學(xué)理論化學(xué)研究所,講師、副教授;
其中:2011.1-2013.9:吉林大學(xué)超硬材料國(guó)家重點(diǎn)實(shí)驗(yàn)室,師資博士后(合作導(dǎo)師:崔田);
2015.5-2016.8: 德國(guó)達(dá)姆施塔特工業(yè)大學(xué)化學(xué)系,洪堡學(xué)者(合作導(dǎo)師:F. Mueller-Plathe);
(4). 2018.12-現(xiàn)在:華南師范大學(xué)化學(xué)與環(huán)境學(xué)院,教授,博士生導(dǎo)師。
個(gè)人簡(jiǎn)介:
劉鴻,男,教授,博士生導(dǎo)師,德國(guó)洪堡學(xué)者,國(guó)家“優(yōu)青”。研究方向?yàn)楣δ芨叻肿硬牧侠碚撛O(shè)計(jì)與模擬。如何在大尺度模擬中協(xié)同考慮聚合物松弛與聚合反應(yīng)動(dòng)力學(xué)是當(dāng)前高分子物理研究中公認(rèn)的難點(diǎn)。劉鴻博士多年來(lái)一直從事功能性高分子材料的理論設(shè)計(jì)與模擬工作,基于高分子反應(yīng)動(dòng)力學(xué)模型發(fā)展了粗粒化分子動(dòng)力學(xué)耦合聚合反應(yīng)的方法,可準(zhǔn)確且高效地描述多種反應(yīng)類(lèi)型。進(jìn)一步利用該方法研究并闡明了表面引發(fā)聚合反應(yīng)中影響聚合物刷結(jié)構(gòu)與性質(zhì)的因素,明確了接枝聚合物材料的浸潤(rùn)性增強(qiáng)機(jī)理,解決了實(shí)驗(yàn)中聚合反應(yīng)調(diào)控材料結(jié)構(gòu)方面的多個(gè)重要問(wèn)題。近年來(lái)在Science, ACS Macro Letters,Macromolecules,J. Chem. Phys.等學(xué)術(shù)期刊發(fā)表研究論文90余篇。
學(xué)術(shù)兼職:
國(guó)際期刊Polymers(JCR Q1, IF4.95)雜志編委
國(guó)際期刊Frontiers in Molecular Biosciences(JCR Q1, IF6.113)雜志編委
國(guó)際期刊Materials Futures(SLAB,IOP CAS and IOP Publishing)雜志青年編委
ORCID:
0000-0002-7256-5751
代表性論文:
1. Liu, H.; Xue, Y.-H.; Zhu, Y.-L.; Gu, F.-L.; Lu, Z.-Y.*, Inverse Design of Molecular Weight Distribution in Controlled Polymerization via a One-Pot Reaction Strategy. Macromolecules 2020, 53 (15), 6409-6419.
2. Yi, C.; Liu, H.; Zhang, S.; Yang, Y.; Zhang, Y.; Lu, Z.; Kumacheva, E.*; Nie, Z.*, Self-limiting directional nanoparticle bonding governed by reaction stoichiometry. Science 2020, 369 (6509), 1369-1374.
3. Yan, Y.-D.; Xue, Y.-H.; Zhao, H.-Y.; Liu, H.*; Lu, Z.-Y.; Gu, F.-L., Insight into the Polymerization-Induced Self-Assembly via a Realistic Computer Simulation Strategy. Macromolecules 2019, 52 (16), 6169-6180.
4. Xing, J.-Y.; Xue, Y.-H.; Lu, Z.-Y.*; Liu, H.*, In-Depth Analysis of Supramolecular Interfacial Polymerization via a Computer Simulation Strategy. Macromolecules 2019, 52 (17), 6393-6404.
5. Liu, H.; Zhao, H.-Y.; Müller-Plathe, F.; Qian, H.-J.; Sun, Z.-Y.; Lu, Z.-Y.*, Distribution of the Number of Polymer Chains Grafted on Nanoparticles Fabricated by Grafting-to and Grafting-from Procedures. Macromolecules 2018, 51 (10), 3758-3766.
6. Xue, Y.-H.; Quan, W.; Liu, X.-L.; Han, C.; Li, H.; Liu, H.*, Dependence of Grafted Polymer Property on the Initiator Site Distribution in Surface-Initiated Polymerization: A Computer Simulation Study. Macromolecules 2017, 50 (17), 6482-6488.
7. Liu, H.*; Zhu, Y.-L.; Lu, Z.-Y.; Müller-Plathe, F., A kinetic chain growth algorithm in coarse-grained simulations. Journal of Computational Chemistry 2016, 37 (30), 2634-2646.
8. Liu, H.; Zhu, Y. L.; Zhang, J.; Lu, Z. Y.*; Sun, Z. Y.*, Influence of Grafting Surface Curvature on Chain Polydispersity and Molecular Weight in Concave Surface-Initiated Polymerization. ACS Macro Letters 2012, 1 (11), 1249-1253.
9. Liu, H.; Li, M.*; Lu, Z. Y.*; Zhang, Z. G.; Sun, C. C.; Cui, T., Multiscale Simulation Study on the Curing Reaction and the Network Structure in a Typical Epoxy System. Macromolecules 2011, 44 (21), 8650-8660.
10. Liu, H.; Li, M.; Lu, Z. Y.*; Zhang, Z. G.; Sun, C. C., Influence of Surface-Initiated Polymerization Rate and Initiator Density on the Properties of Polymer Brushes. Macromolecules 2009, 42 (7), 2863-2872.