80电影天堂网,少妇高潮一区二区三区99,jαpαnesehd熟女熟妇伦,无码人妻精品一区二区蜜桃网站

當(dāng)前位置:群英聚首 > 論文著作 > 正文
(Soft Matter) Capillary adhesion of wetted cribellate spider capture silks for larger pearly hanging-drops
來(lái)源:鄭詠梅教授個(gè)人網(wǎng)站 發(fā)布日期:2012-07-24
作者:Z. Huang, Y. Chen, Y. Zheng* & L. Jiang
關(guān)鍵字:Spider silk, Water collection
論文來(lái)源:期刊
具體來(lái)源:Soft Matter, 2011, 7, 9468–9473
發(fā)表時(shí)間:2011年

Larger hanging-drops on a fiber have been significant for water-acquiring engineering or filtering projects in recent years. Cribellate spider capture silks after wetting hang amazingly large pearly water drops and display strong water capture ability. This ability wouldn’t exist without a special wet adhesion on a surface. Here, we investigate the capillary adhesion on wetted cribellate spider’s capture silk during the hanging of larger pearly water drops. Based on the roughness and curvature of a spindle-knot on wetted spider silk, the novel models of capillary adhesion force are proposed to value the larger pearly hanging-drops. The strong water-capturing ability can be demonstrated by as-designed artificial fibers. This investigation opens an insight into the wet adhesive property of spider silk, which is helpful to design artificial polymer fibers that will be applied into water collecting tents and webs, and extended
into filtering projects such as the noxious emission of aerosol and dust pollution from chemical plants.

Copyright © 2005 Polymer.cn All rights reserved
中國(guó)聚合物網(wǎng) 版權(quán)所有
經(jīng)營(yíng)性網(wǎng)站備案信息

京公網(wǎng)安備11010502032929號(hào)

工商備案公示信息

京ICP證050801號(hào)

京ICP備12003651號(hào)