80电影天堂网,少妇高潮一区二区三区99,jαpαnesehd熟女熟妇伦,无码人妻精品一区二区蜜桃网站

Current Location :> Home > profile
profile


一、個(gè)人簡(jiǎn)介:


冉奮,教授/博導(dǎo),甘肅省飛天學(xué)者,2022科睿唯安“高被引科學(xué)家”。”沈陽(yáng)化工大學(xué)高分子復(fù)合材料本科畢業(yè),分別于北京化工大學(xué)材料科學(xué)與工程學(xué)院(化工資源有效利用國(guó)家重點(diǎn)實(shí)驗(yàn)室)、四川大學(xué)高分子科學(xué)與工程學(xué)院(高分子材料工程國(guó)家重點(diǎn)實(shí)驗(yàn)室)獲得工學(xué)碩士、工學(xué)博士學(xué)位。新加坡國(guó)立大學(xué)訪問研究員、美國(guó)加州大學(xué)圣克魯斯分校訪問學(xué)者,美國(guó)加州大學(xué)圣芭芭拉分校學(xué)習(xí)雙語(yǔ)教育教學(xué)法。擔(dān)任中國(guó)生物材料學(xué)會(huì)血液凈化材料分會(huì)委員,擔(dān)任InfoMat、Energy&Environmental Materials、eScience、Advaned Power Materials、InfoScience、材料導(dǎo)報(bào)、電子元件與材料等期刊的青年編委、執(zhí)行編委或編委。獲得甘肅省青年教師成才獎(jiǎng),甘肅省重點(diǎn)人才項(xiàng)目和蘭州理工大學(xué)紅柳杰出人才計(jì)劃資助?,F(xiàn)為蘭州理工大學(xué)材料科學(xué)與工程學(xué)院教師。個(gè)人簡(jiǎn)介:orcid.org/0000-0002-7383-1265 。


二、主持項(xiàng)目:


主持國(guó)家自然科學(xué)基金包括青年、地區(qū)、面上項(xiàng)目5項(xiàng);主持并完成博士后面上項(xiàng)目、博士后特別資助,甘肅省重點(diǎn)人才項(xiàng)目,以及甘肅省自然科學(xué)基金;主持四川大學(xué)高分子材料與工程國(guó)家重點(diǎn)實(shí)驗(yàn)室開放基金、沈陽(yáng)金屬材料國(guó)家實(shí)驗(yàn)室-蘭州理工大學(xué)有色金屬先進(jìn)加工與再利用國(guó)家重點(diǎn)實(shí)驗(yàn)室共同資助培育項(xiàng)目,以及蘭州理工大學(xué)紅柳優(yōu)秀基金、紅柳杰出人才項(xiàng)目。


二、學(xué)術(shù)專著:


[1] 撰寫:Polyethersulfone、Polyethersulfone Membrane、Polypropylene、Polypropylene Membrane,《Encyclopedia of Membranes》, Editors: E. Droli, L. Giorno, Springer 2015.


[2] 撰寫:Chapter 10: Polyaniline based composites and nanocomposites,《Polyaniline: Blends, Composites and Nanocomposites》, Editor: Alexandru Mihai Grumezescu, Elsevier 2016.


[3] 撰寫:Chapter 1: Polyethersulfone (PES) fiber, Volume 5: Polymer Fibers,《Composites in Biomedical Engineering (multi volume SET I-IX)》, Editor: Ashutosh Tiwari, Elsevier 2017.


[4] 主編:《Advanced Nanomaterials for Energy Storage and Power Battery》, Elsevier 2019.


三、代表性學(xué)術(shù)論文:


[1] Modification of polyethersulfone membrane-A review of methods, Progress in Materials Science 2013, 58(1): 76-150.


[2] Metal-Organic-Framework-Derived Nanostructures as Multifaceted Electrodes in Metal-Sulfur Batteries, Advanced Materials, 2021, 33(27): 2008784.


[3] Nanoribbons Self-Assembled by Rapid Cooling Method Towards High-Capacity Vanadium Nitride Anode Materials, Advanced Energy Materials 2022, 12(13): 2103158.


[4] Sulfur-Containing Polymer Cathode Materials: From Energy Storage Mechanism to Energy Density, InfoMat 2022, 4(8): e12319.


[5] Design Strategies of 3D Carbon-based Electrodes for Charge/Ion Transport in Lithium Ion Battery and Sodium Ion Battery. Advanced Functional Materials 2021: 2010041.


[6] Energy Storage Mechanism of Vanadium Nitride via Intercalating Different Atomic Radius for Expanding Interplanar Spacing, Energy & Environmental Materials 2022 (5): 565-571.


[7] Surfactant Induced Self-Assembly to Prepare Vanadium Nitride/N, S Co-doped Carbon as High-Capacitance Anode Materials, Chemical Communications 2021, 57, 10246-10249.


[8] Integrating Supercapacitor with Sodium Hyaluronate based Hydrogel as A Novel All-In-One Wound Dressing: Self-Powered Electronic Stimulation, Chemical Engineering Journal 2023, 452: 139491.


[9] A New Strategy Based on Multi-Phase Polymeric Material System to Improve the Electrochemical Behavior of Supercapacitor Negative Electrode, Nano-Micro Letters 2018, 10: 63.


[10] 3D Layered Nanostructure of Vanadium Nitrides Quantum Dots@Graphene Anode Materials via In-Situ Redox Reaction Strategy, Chemical Engineering Journal 2021, 417: 129267.


[11] All-In-One Energy Storage Devices Supported and Interfacially Cross-linked by Gel Polymeric Electrolyte, Energy Storage Materials 2021, 37: 587-597.


[12] Cobalt-based Double Catalytic Sites on Mesoporous Carbon as Reversible Polysulfide Catalysts for Fast-Kinetic Li-S Batteries, ACS Applied Materials & Interfaces 2021, 13(43), 51174–51185.


[13] Cyclic Stability of Supercapacitors: Materials, Energy Storage Mechanism, Test Methods, and Device, Journal of Materials Chemistry A 2021, 9, 24094-24147.


[14] Conductive 3D networks in a 2D layer for high performance ultrafiltration membrane with high flux-retention and robust cyclic stability, Journal of Membrane Science 2021, 640: 119781.


[15] Chemically building interpenetrating polymeric networks of bi-crosslinked hydrogel macromolecules for membrane supercapacitors. Carbohydrate Polymers 2021, 255: 117346.


[16] Hydrated halide clusters on electrode materials for aqueous supercapacitor. Journal of Power Sources 2021, 491: 229612.


[17] Vanadium Nitride for aqueous Supercapacitors: A Topic Review, Journal of Materials Chemistry A 2020, 8: 8218-8233.


[18] Dual High-Conductivity Networks via Importing a Polymeric Gel Electrolyte into the Electrode Bulk, ACS Applied Materials & Interfaces 2020, 12(37): 41239-41249.


[19] Fundamental Triangular Interaction of Electron Trajectory Deviation and P-N Junction to Promote Redox Reactions for the High-Energy-Density Electrode, ACS Applied Materials & Interfaces 2020, 12(26): 29404-29413.


[20] Electrolyte-philic Electrode Material with Functional Polymer Brush, ACS Applied Materials & Interfaces 2019, 11(17): 16087-16095.