廢聚對苯二甲酸乙二醇酯(PET)可通過定向加氫轉(zhuǎn)化為高價值化學(xué)品,展現(xiàn)出巨大的應(yīng)用潛力。然而,實現(xiàn)精準的催化控制仍面臨挑戰(zhàn)。在本研究中,研究人員首次利用精心設(shè)計的 PtW/MCM-48 催化劑,通過精準調(diào)控催化劑的中等酸性位點,實現(xiàn)了廢 PET 一鍋法選擇性加氫制備對甲基苯甲酸(p-TA),產(chǎn)率高達53.4%,同時聯(lián)產(chǎn)36.4%的對二甲苯(PX)。機制研究表明,其優(yōu)異的催化性能源于 Pt 納米顆粒與 WOx 物種之間的協(xié)同作用:低價 WOx 物種增強了 Pt 的分散性,而 Pt 進一步穩(wěn)定 WOx 為低聚合態(tài)多鎢酸鹽。PtW1.5/MCM-48 具備適度酸位點,能有效調(diào)控 p-TA 的解吸,抑制其過度加氫轉(zhuǎn)化為 PX,并在真實 PET 廢料轉(zhuǎn)化中展現(xiàn)出良好的適用性。LCA 和 TEA 分析進一步凸顯了該技術(shù)的應(yīng)用前景。
新型化學(xué)回收技術(shù)被認為是一種實現(xiàn)廢棄PET的高效轉(zhuǎn)化和高值利用的理想方法。眾所周知,對甲基苯甲酸(p-TA)是一種重要的化工原料,廣泛用于感光材料、酰胺類殺菌劑的有機合成。目前,p-TA的工業(yè)生產(chǎn)仍依賴于以石油腦催化重整的對二甲苯(PX)為原料,通過濃硝酸氧化或環(huán)烷酸鈷催化的傳統(tǒng)石油途徑,存在設(shè)備腐蝕嚴重、p-TA產(chǎn)率低、催化劑無法回收等棘手問題。相比之下,新型化學(xué)回收技術(shù)在傳統(tǒng)的化學(xué)回收工藝的基礎(chǔ)上,原位升級解聚后的單體,但PET分子結(jié)構(gòu)中苯環(huán)與羧基的共軛效應(yīng)導(dǎo)致其不對稱加氫反應(yīng)極為困難,實現(xiàn)不對稱氫化產(chǎn)物的高產(chǎn)量仍然是一個重大挑戰(zhàn)?朔@些內(nèi)在障礙需要開發(fā)高度針對性和選擇性的催化系統(tǒng),其中催化劑的適度酸度設(shè)計呈現(xiàn)出非同尋常的復(fù)雜性和難度。
本文亮點
1、本研究采用一步法選擇性加氫策略,實現(xiàn)廢 PET 高選擇性不對稱加氫定向制備高值化學(xué)品 p-TA,適用于多種形式的 PET 廢料。生命周期評價(LCA)和技術(shù)經(jīng)濟評價(TEA)結(jié)果表明,該方法不僅顯著減少了傳統(tǒng)石化工藝帶來的環(huán)境污染,同時具備優(yōu)越的經(jīng)濟可行性。
2、本研究采用精心設(shè)計的雙功PtW/MCM-48催化劑,展現(xiàn)出卓越的催化性能,使 p-TA 和 PX 的收率分別達到 53.4% 和 36.4%。催化劑具有較高的穩(wěn)定性,易分離、可循環(huán)利用。
3、多種表征手段和DFT計算結(jié)果共同表明,PtW/MCM-48催化劑的優(yōu)越性能源于Pt NPs和WOx物種之間的協(xié)同相互作用,優(yōu)化的 Pt/W 比例賦予催化劑適度的中等酸性位點,可以精準控制中間體的吸附和解吸,從而促進p-TA的形成,同時抑制過加氫生成PX。
4、本研究開發(fā)了一種高效的金屬/酸雙功能催化劑,深入解析了廢 PET 選擇性加氫過程中羰基環(huán)和苯環(huán)的部分氫化機制,對廢塑料氫化回收新技術(shù)的開發(fā)具有重要參考價值。
Figure 1. Schematic diagrams of conventional PET recycling methods, petroleum-based p-TA preparation, and the new method for p-TA production via selective hydrogenation of PET in this work.
Figure 2. Optimization of reaction conditions for targeted hydrogenation of waste PET to p-TA and PX over Pt-based catalysts. (A) Effect of different supports; (B) effect of second metal sites of bimetallic Pt-M/MCM-48 (n(Pt): n(M) = 1:1.5); (C) effect of Pt/W molar ratio in PtW/MCM-48 catalyst; (D) effect of reaction temperature; (E) effect of H2 pressure. General reaction conditions: 0.05 g PET, 3 mL of H2O, 12 h, 700 rpm, 0.05 g catalyst with 5.0 wt% Pt loading, pH=2, 260 °C, 2 MPa H2.
Figure 3. (A, B) Reaction product distributions on the targeted hydrogenation of waste PET over (A) PtW1.5/MCM-48 and (B) Pt/MCM-48 catalysts as a function of time. Reaction conditions: 0.05 g PET, 3 mL of H2O, 260 °C, 2 MPa H2, 12 h, 700 rpm, 0.05 g catalyst, pH=2 (with PWA). Specially, for aromatic liquid products, the yields were calculated by (moles of aromatic ring in product)/ (moles of aromatic ring in feedstock). For raw PET materials, the conversion was calculated by (moles of all aromatic liquid products)/ (moles of aromatic ring in feedstock). (C) Possible reaction pathway for the targeted hydrogenation of waste PET over PtW1.5/MCM-48 catalyst.
Figure 4. (A) XRD patterns of MCM-48, Pt/MCM-48 catalyst, and PtW/MCM-48 catalysts with different Pt/W molar ratios. (B) UV-vis spectra of (a) MCM-48, (b) W1.5/MCM-48, (c) W2/MCM-48, (d) Pt/MCM-48, (e) PtW0.5/MCM-48, (f) PtW1.3/MCM-48, (g) PtW1.5/MCM-48, (h) PtW1.8/MCM-48, (i) PtW2/MCM-48. (C) Raman spectra of (a) MCM-48, (b) Pt/MCM-48, (c) PtW0.5/MCM-48, (d) PtW1.3/MCM-48, (e) PtW1.5/MCM-48, (f) PtW1.8/MCM-48, (g) PtW2/MCM-48, (h) W1.5/MCM-48, (i) W2/MCM-48. (D) H2-TPR profiles of the Pt/MCM-48 and PtW1.5/MCM-48 catalysts. (E) XPS spectra of W4f in the W1.5/MCM-48, PtW2/MCM-48 and PtW1.5/MCM-48 catalysts. (F, G) HAADF-STEM images of (F) W1.5/MCM-48 and (G) W2/MCM-48 samples. (H-K) EDX spectroscopy mapping profiles of PtW1.5/MCM-48 catalyst. (L-N) HR-TEM images and particle size distributions of (L) PtW1.5/MCM-48, (M) Pt/MCM-48, (N) PtW2/MCM-48 catalysts. (O-T) HR-TEM images of the PtW1.5/MCM-48 catalyst.
Figure 5. (A) XPS spectras of W4f in the PtW/MCM-48 catalysts with different PtW molar ratios. (B) Correlation between the molar ratio of Pt/W of PtW/MCM-48 catalysts and the formation rate of p-TA and PX, along with the W5+/(W5++W6+) ratio on the catalysts surface. (C) NH3-TPD profiles of the PtW/MCM-48 catalysts. (D) Relationship between Pt/W molar ratio in PtW/MCM-48 catalysts and the content of weak and total acidic sites. (E) Acetic acid TPD-MS results for PtW/MCM-48 catalysts with different PtW molar ratios. (F, G) The IR spectra of adsorbed pyridine on (F) PtW1.5/MCM-48 and (G) PtW2/MCM-48 catalysts. (H) Br?nsted and Lewis acid sites contents and ratios of Pt/MCM-48 and PtW/MCM-48 catalysts.
Figure 6. (A, B) DRIFTS images of acetic acid adsorption on (A) PtW1.5/MCM-48 and (B) PtW2/MCM-48 catalysts. (C, D) The intermediate CH3-Ph-COOH* on the (C) W3O7/Pt(111) and (D) W4O7/Pt(111) model. (E) Reaction energies of the hydrogenolysis of p-TA on W3O7/Pt(111) and W4O7/Pt(111) surfaces. (F, G) Schematic diagram of selective hydrogenation of waste PET to p-TA and PX over (C) PtW1.5/MCM-48 and (D) PtW2/MCM-48 catalysts.
Figure 7. (A) Targeted hydrogenation of real waste PET plastics (a) polyester rope, (b) seal bag, (c) water bottle, (d) snake-skin rope, (e) tray, (f) coloured ribbon, (g)white terylene cotton, (h)black terylene cotton to p-TA and PX over PtW1.5/MCM-48 catalyst. General reaction conditions: 0.05 g real PET plastics, 3 mL of H2O, 260 °C, 2 MPa H2, 700 rpm, 12 h, 0.05 g PtW1.5/MCM-48, pH=2 (with PWA). (B) Comparison of the revenues and costs of waste PET and naphtha to p-TA (100,000 tons p-TA production per year). (C) Comparison of the viabilities of the production of p-TA from waste PET and naphtha. “M-facter” referred as Material consumption (ton/ton p-TA) and “C-facter” referred as Catalyst cost ($/ton p-TA). (D) Comparison of non-renewable energy use (NREU) and global warming potential (GWP) in production of 1 kg p-TA from waste PET and naphtha.
原文信息:
第一作者:朱越、毛周穎
通訊作者:梅清清
通訊單位:浙江大學(xué)環(huán)境與資源學(xué)院
論文DOI:10.1021/jacs.5c01209
https://pubs.acs.org/doi/10.1021/jacs.5c01209
通訊作者簡介
梅清清,浙江大學(xué)環(huán)境與資源學(xué)院“百人計劃”研究員,博士生導(dǎo)師,英國皇家學(xué)會牛頓國際學(xué)者。長期致力于生物質(zhì)/廢塑料等有機固體廢棄物的高值化利用,圍繞關(guān)鍵化學(xué)鍵的精準活化與調(diào)控,開發(fā)原子經(jīng)濟性轉(zhuǎn)化路線與綠色催化體系,以實現(xiàn)復(fù)雜多介質(zhì)有機固廢體系的高選擇性資源回收。在Sci. Adv., J. Am. Chem. Soc., Angew. Chem. Int. Ed. 等權(quán)威期刊上發(fā)表SCI論文50余篇,授權(quán)國家發(fā)明專利13件,主持國家自然科學(xué)基金、浙江省重點研發(fā)計劃等項目。擔(dān)任Science Bulletin/《科學(xué)通報》 特邀編委,The Innovation期刊青年編委,Carbon & Hydrogen青年編委。
主要研究方向:廢塑料/生物質(zhì)等固廢資源化;有機固廢基環(huán)境功能材料;多源固廢協(xié)同治理技術(shù)與裝備。
E-mail: meiqq@zju.edu.cn
教師主頁:https://person.zju.edu.cn/qingqingmei