80电影天堂网,少妇高潮一区二区三区99,jαpαnesehd熟女熟妇伦,无码人妻精品一区二区蜜桃网站

搜索:  
浙理工胡毅教授 Nano Energy:基于異質(zhì)界面工程Janus結(jié)構(gòu)復(fù)合納米纖維膜實(shí)現(xiàn)高性能全固態(tài)鋰金屬電池
2025-05-20  來源:高分子科技

  隨著智能紡織和可穿戴電子設(shè)備的快速發(fā)展,如何實(shí)現(xiàn)既柔性又安全的高性能能源存儲(chǔ)成為科研前沿的重要課題。近日,浙江理工大學(xué)紡織科學(xué)與工程學(xué)院(國際絲綢學(xué)院)胡毅教授團(tuán)隊(duì)在國際著名期刊《Nano Energy》(影響因子16.8)在線發(fā)表了題為《Janus-structured composite nanofiber membranes with heterointerfacial engineering for high-performance all-solid-state lithium metal batteries》的研究論文。該研究提出了一種具有三維異構(gòu)界面結(jié)構(gòu)的Janus復(fù)合納米纖維膜,顯著提升了固態(tài)鋰金屬電池的離子傳輸效率和界面穩(wěn)定性,為柔性智能紡織器件中的儲(chǔ)能問題提供了創(chuàng)新性的解決方案。論文DOI10.1016/j.nanoen.2025.111136。本文第一作者為浙江理工大學(xué)紡織科學(xué)與工程學(xué)院(國際絲綢學(xué)院)博士研究生李德華,通訊作者為浙江理工大學(xué)博士生導(dǎo)師胡毅教授。




  在柔性電子設(shè)備和高安全儲(chǔ)能系統(tǒng)迅速發(fā)展的背景下,固態(tài)鋰電池因其優(yōu)異的熱穩(wěn)定性與本征安全性,正逐漸成為下一代電池技術(shù)的核心方向。然而,單一無機(jī)固態(tài)電解質(zhì)雖然導(dǎo)電性強(qiáng),卻脆弱且難以與柔性電子器件的軟質(zhì)界面相匹配;而純聚合物電解質(zhì)雖然柔軟易加工,但離子導(dǎo)電性不足,難以滿足高性能需求。復(fù)合固態(tài)電解質(zhì)融合無機(jī)納米顆粒的高導(dǎo)電性與聚合物的柔韌性,成為實(shí)現(xiàn)高效且安全儲(chǔ)能的主流方案。傳統(tǒng)研究多采用二維層狀結(jié)構(gòu),但其異質(zhì)界面面積有限,機(jī)械耦合效果不足,制約了材料在智能紡織等柔性領(lǐng)域的廣泛應(yīng)用。


  為此,胡毅團(tuán)隊(duì)創(chuàng)新采用電紡技術(shù),構(gòu)筑了具有三維互穿Janus異質(zhì)界面的復(fù)合納米纖維膜。該結(jié)構(gòu)在柔軟的PVDF-HFP基底上定向固定LLZO納米顆粒,并結(jié)合塑化劑優(yōu)化聚合物結(jié)晶度,實(shí)現(xiàn)了離子傳輸路徑的多元化和界面能量勢(shì)的優(yōu)化。該設(shè)計(jì)不僅顯著提升了膜的機(jī)械強(qiáng)度(達(dá)到4.24 MPa),還實(shí)現(xiàn)了7.60×10-4 S·cm-150°C)高離子導(dǎo)電率和0.75的鋰離子遷移數(shù)。理論計(jì)算顯示,Janus膜表面的C-F官能團(tuán)及路易斯酸堿活性位點(diǎn)有效促進(jìn)鋰鹽解離,降低鋰離子遷移能壘,形成穩(wěn)定的Li3N/LiF界面SEI層,保證了鋰金屬的均勻沉積和長(zhǎng)壽命循環(huán)。該復(fù)合電解質(zhì)在實(shí)際柔性軟包電池中展現(xiàn)出優(yōu)異性能,能夠驅(qū)動(dòng)織物上的冷光發(fā)光裝置ACEL和肌電傳感器,在180度折疊、針刺、機(jī)械剪切及高溫環(huán)境下依然穩(wěn)定工作,完美契合智能紡織對(duì)柔性儲(chǔ)能的需求。該研究不僅從材料結(jié)構(gòu)設(shè)計(jì)層面突破了傳統(tǒng)固態(tài)電解質(zhì)在機(jī)械強(qiáng)度和離子傳輸之間的矛盾,更為智能紡織領(lǐng)域的能源集成提供了強(qiáng)有力的技術(shù)支撐。


  具體而言:該研究引入了一種Janus結(jié)構(gòu)的復(fù)合纖維膜,通過在PEO基體內(nèi)部創(chuàng)建異質(zhì)界面,提供了多重離子傳輸路徑。這種Janus結(jié)構(gòu)的復(fù)合電解質(zhì)(PHSL-CSE)是通過靜電紡絲技術(shù)構(gòu)建三維互穿網(wǎng)絡(luò)實(shí)現(xiàn)的。這種Janus結(jié)構(gòu)在PEO-LLZO界面構(gòu)建了豐富的無機(jī)-聚合物異質(zhì)界面,調(diào)控了離子傳輸行為,形成了多種鋰離子傳輸通道:(i) PEO基體內(nèi)的鏈段運(yùn)動(dòng);(ii) LLZO顆粒形成的連續(xù)相;(iii) PEO-LLZO異質(zhì)界面的空間電荷層。這些機(jī)制協(xié)同作用,顯著提高了鋰離子在電解質(zhì)內(nèi)的傳輸效率。



Fig. 1. Schematic illustration of the ion transport mechanism and fabrication process of the PHSL-CSE composite solid electrolyte with a three-dimensional interconnected Janus structure.(a) Representation of the Janus-structured composite fiber membrane, showcasing its unique heterogeneous interface and architecture.(b) Illustration of the multiple lithium-ion transport pathways enabled by the Janus structure, highlighting the role of the interconnected network in facilitating efficient ion migration. (c)Schematic of the full-cell configuration assembled with the PHSL-CSE composite solid-state electrolyte, demonstrating its integration into a practical solid-state lithium battery. (d) Step-by-step fabrication process of the PHSL-CSE composite electrolyte, emphasizing the formation of the Janus structure and the incorporation of functionalized components.


  通過X射線衍射(XRD)、透射電子顯微鏡(TEM)、掃描電子顯微鏡(SEM)和元素映射等手段對(duì)材料進(jìn)行了表征。結(jié)果證實(shí)了Janus結(jié)構(gòu)的成功構(gòu)建以及LLZO顆粒在纖維表面和內(nèi)部的均勻分布。這確保了連續(xù)的離子通道和良好的界面相容性。傅里葉變換紅外光譜(FTIR)分析表明,LLZO的加入降低了PVDF-HFP的結(jié)晶度,LLZOSN協(xié)同促進(jìn)了PVDF-HFP的脫氟化氫反應(yīng)。差示掃描量熱法(DSC)顯示,Janus結(jié)構(gòu)納米纖維的引入顯著抑制了PEO鏈段的結(jié)晶。熱重分析(TGA)和高溫測(cè)試表明,PHSL-CSE電解質(zhì)具有優(yōu)異的熱穩(wěn)定性和尺寸穩(wěn)定性。機(jī)械性能測(cè)試顯示,該電解質(zhì)具有高機(jī)械強(qiáng)度(4.24 MPa)和良好的柔韌性。



Fig. 2. Comprehensive characterization of the Janus fiber membrane and electrolytes across different systems. (a) X-ray diffraction (XRD) patterns of LLZO, PHS-CSE, and PHSL (Janus) composite fiber membranes. (b) Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectra of PHSL fibers with varying LLZO content. (c) ATR-FTIR spectra of PEO-LiTFSI, PHS-CSE, and PHSL-CSE solid electrolyte films. (d) Differential scanning calorimetry (DSC) curves of PEO-LiTFSI, PHS-CSE, and PHSL-CSE solid electrolytes. (e, f) Transmission electron microscopy (TEM) images of PHSL (Janus) composite nanofibers at different magnifications. (g, h) SEM images of PHSL (Janus) composite nanofibers at varying magnifications. (i) SEM image of a single Janus fiber (j) Corresponding elemental mapping of the Janus fiber, illustrating the spatial distribution of key elements and confirming the structural heterogeneity of the Janus architecture.



Fig. 3. Mechanical and thermal properties of composite solid electrolytes and their molecular coordination mechanisms. (a) TGA curves of PHS-CSE and PHSL-CSE composite solid electrolytes. (b) Stress-strain curves of PEO-LiTFSI, PHS-CSE, and PHSL-CSE composite solid electrolytes. (c) Raman spectra of PEO-LiTFSI, PHS-CSE, and PHSL-CSE composite solid electrolytes within the 730–755cm-1 range. (d–f) Schematic molecular coordination models of (d) PEO-LiTFSI, (e) PH-CSE, and (f) PHS-CSE electrolytes. (g) Mean square displacement (MSD) profiles of lithium ions in PEO-LiTFSI, PH-CSE, and PHS-CSE electrolytes. (h) Radial distribution functions (RDF) and coordination numbers (CN) for Li+and TFSI-1 in PEO-LiTFSI, PH-CSE, and PHS-CSE electrolytes. (i) RDF and CN for Li+ and thylene oxide (EO) segments in PEO-LiTFSI, PH-CSE, and PHS-CSE electrolytes. (j) Digital photographs of PEO-LiTFSI, PHS-CSE, and PHSL-CSE composite solid electrolytes before and after heating at 150°C for 30minutes. (k) Digital images showcasing the mechanical robustness of PHSL-CSE solid electrolyte films in various states, including original, curled, compressed, recovered, and in a suspended state under a 500g weight.


  電化學(xué)性能方面,PHSL-CSE電解質(zhì)在50°C時(shí)離子電導(dǎo)率達(dá)到7.60 × 10-4 S cm-1,鋰離子遷移數(shù)為0.75Arrhenius圖顯示其活化能較低。拉曼光譜和密度泛函理論(DFT)計(jì)算表明,PVDF-HFP對(duì)TFSI-陰離子有較強(qiáng)吸附作用,促進(jìn)鋰鹽解離并抑制陰離子遷移。分子動(dòng)力學(xué)(MD)模擬也支持了鋰離子在復(fù)合電解質(zhì)中更快的擴(kuò)散。線性掃描伏安法(LSV)顯示電化學(xué)窗口寬達(dá)4.94 V。



Fig. 4.Electrochemical performance of composite solid electrolytes. (a) Electrochemical impedance spectroscopy (EIS) spectra of the PHSL-CSE composite solid electrolyte at various temperatures. (b) Arrhenius plots of ionic conductivity for PEO-LiTFSI, PHS-CSE, and PHSL-CSE composite solid electrolytes. (c) Chronoamperometric response of Li | PHSL-CSE | Li symmetric cell; inset: Nyquist impedance spectra recorded before and after polarization. (d) Linear sweep voltammetry (LSV) curves of PEO-LiTFSI, PHS-CSE, and PHSL-CSE composite solid electrolytes. (e) Energy level diagrams illustrating the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) for PVDF-HFP, PEO, LiTFSI, and succinonitrile (SN). (f) Binding energies of TFSI- with SN, PEO, and PVDF-HFP. (g) Critical current density (CCD) curves of PEO-LiTFSI, PHS-CSE, and PHSL-CSE composite solid electrolytes. (h) Interfacial resistance of the Li | PHSL-CSE | Li symmetric cell before and after 100 charge-discharge cycles. (i) Tafel plots of PEO-LiTFSI, PHS-CSE, and PHSL-CSE composite solid electrolytes.


  與鋰金屬負(fù)極的界面穩(wěn)定性優(yōu)異,Li/Li對(duì)稱電池循環(huán)穩(wěn)定性超過3500小時(shí),這得益于Janus結(jié)構(gòu)促進(jìn)形成了富含Li3N/LiF的穩(wěn)定SEI層。XPS分析和DFT計(jì)算證實(shí)了SEI的成分及其對(duì)均勻鋰沉積和抑制枝晶生長(zhǎng)的作用。XPS分析表明,循環(huán)后的Li | PHSL-CSE | Li電池在鋰負(fù)極表面形成了富含Li3N/LiFSEI層。DFT計(jì)算(吸附能)證實(shí),Li+優(yōu)先吸附在LiFLi3N界面,抑制了鋰枝晶的隨機(jī)形核和生長(zhǎng)。這種穩(wěn)定的SEI層有效隔離了電解質(zhì)與鋰金屬的直接接觸,減少了副反應(yīng)。



Fig. 5. Long-term cycling performance and morphological characterization of lithium metal surfaces.(a) Cycling stability of Li/Li symmetric cells with PEO-LiTFSI, PHS-CSE, and PHSL-CSE composite solid electrolytes at a current density of 0.1mAcm-2. (b-d) SEM images of lithium metal surfaces after 50 cycles for Li | PEO-LiTFSI | Li cells, and 100 cycles for Li | PHS-CSE | Li and Li | PHSL-CSE | Li cells. (e) XPS spectra of the lithium metal surfaces after cycling.(f) Adsorption energies of Li+ on LiF (200), Li3N (001), and Li (001) interfaces. (g) Schematic representation of the lithium deposition mechanism using PEO-LiTFSI and PHSL-CSE composite solid electrolytes.


  該電解質(zhì)在全電池中也表現(xiàn)出色。LiFePO4 | PHSL-CSE | Li電池在0.5 C下循環(huán)500次后容量保持率仍很高。NCM811 | PHSL-CSE | Li電池在1 C下循環(huán)100次后也保持了良好的容量。更重要的是,采用PHSL-CSE電解質(zhì)的柔性軟包電池展現(xiàn)出卓越的集成能力和機(jī)械魯棒性。即使在180°折疊、機(jī)械剪切、針刺和80°C熱暴露等極端條件下,軟包電池仍能穩(wěn)定為ACEL發(fā)光器件和肌電傳感器供電,顯示出其在可穿戴電子設(shè)備領(lǐng)域的巨大潛力。



Fig. 6. Performance evaluation of all-solid-state lithium metal batteries at 50°C. (a) Electrochemical impedance spectroscopy (EIS) of Li | PEO-LiTFSI | LiFePO4, Li | PHS-CSE | LiFePO4, and Li | PHSL-CSE | LiFePO4 cells. (b) Voltage versus areal capacity curves for Li | PHSL-CSE | LiFePO4 cells. (c) Long-term cycling performance of Li | PHSL-CSE | LiFePO4 cells at a 0.2C rate. (d) Rate performance of Li | PHSL-CSE | LiFePO4 cells. (g) Voltage versus areal capacity curves at various rates for Li | PHSL-CSE | LiFePO4 cells. (e) Voltage versus areal capacity curves and (f) long-term cycling performance of Li | PHSL-CSE | LiFePO4 cells at a 0.5?C rate. (h) Voltage versus areal capacity curves and (i) long-term cycling performance of Li | PHSL-CSE | NCM811 cells at a 1C rate. (j) Optical images of Li | PHSL-CSE | LiFePO4 solid-state pouch lithium metal batteries, showing stable power output under various mechanical deformations including flat, bent, folded, cut, and punctured states.(k) A solid-state pouch cell integrated with an EMG armband, demonstrating the pouch battery''s capability to power a small vehicle via a flexible interface. (l) The pouch battery maintains stable output voltage even in a folded state. (m) Integration of the pouch battery with an ACEL flexible display, providing stable power to a flexible electronic device.


  總而言之,這項(xiàng)研究通過Janus結(jié)構(gòu)復(fù)合納米纖維膜的異質(zhì)界面工程,成功開發(fā)了一種高性能、柔性的全固態(tài)電解質(zhì)。該電解質(zhì)集高離子導(dǎo)電率、高遷移數(shù)、優(yōu)異的機(jī)械/熱穩(wěn)定性和界面穩(wěn)定性于一體,有效抑制了鋰枝晶生長(zhǎng),并在柔性電池應(yīng)用中展現(xiàn)出巨大潛力。這項(xiàng)工作為開發(fā)用于儲(chǔ)能和可穿戴電子設(shè)備的高性能、柔性全固態(tài)鋰電池提供了新思路。


  在此,感謝浙江省自然科學(xué)基金項(xiàng)目(LY21E030023)和浙江理工大學(xué)嵊州創(chuàng)新研究院基金項(xiàng)目(SYY2024C000008)的支持!


  通訊作者簡(jiǎn)介胡毅,男,博士,教授,博士生導(dǎo)師。浙江理工大學(xué)紡織科學(xué)與工程學(xué)院(國際絲綢學(xué)院)副院長(zhǎng),主要從事非水介質(zhì)染整新技術(shù)和柔性電子智能紡織品研究。以第一作者或通訊作者在 Advanced Functional Materials, Nano Letters, Energy Storage Materials, Nano Energy, Chemical Engineering Journal等刊物上發(fā)表SCI論文70余篇,授權(quán)和轉(zhuǎn)化國家發(fā)明專利30余項(xiàng)。獲得國家級(jí)教學(xué)成果二等獎(jiǎng)和浙江省教學(xué)成果特等獎(jiǎng)各1項(xiàng);主持獲得中國紡織工業(yè)聯(lián)合會(huì)教學(xué)成果一、二、三等獎(jiǎng),浙江省自然科學(xué)獎(jiǎng)三等獎(jiǎng)和中國商業(yè)聯(lián)合會(huì)科技進(jìn)步獎(jiǎng)二等獎(jiǎng)各1項(xiàng)。


  原文鏈接:https://doi.org/10.1016/j.nanoen.2025.111136

版權(quán)與免責(zé)聲明:中國聚合物網(wǎng)原創(chuàng)文章?锘蛎襟w如需轉(zhuǎn)載,請(qǐng)聯(lián)系郵箱:info@polymer.cn,并請(qǐng)注明出處。
(責(zé)任編輯:xu)
】【打印】【關(guān)閉

誠邀關(guān)注高分子科技

更多>>最新資訊
更多>>科教新聞